IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v71y2010i2p283-306.html
   My bibliography  Save this article

Extensions to the continuous ordered median problem

Author

Listed:
  • Jochen Krebs
  • Stefan Nickel

Abstract

Classical location models fix an objective function and then attempt to find optimal points to this objective. In the last years a flexible approach, the ordered median problem, has been introduced. It handles a wide class of objectives, such as the median, the center and the centdian function. In this paper we present new properties of the ordered median problem such as solvability for the situation of attractive and repulsive locations. We also develop a new solution method that even yields local optimal points for non-convex objective functions. Furthermore, we discuss separability of ordered median problems without repulsion and derive a sufficient criterion. Finally, we introduce a useful model extension, the facility class model, which allows to deal with a wider range of real world problems in the ordered median setting. Copyright Springer-Verlag 2010

Suggested Citation

  • Jochen Krebs & Stefan Nickel, 2010. "Extensions to the continuous ordered median problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(2), pages 283-306, April.
  • Handle: RePEc:spr:mathme:v:71:y:2010:i:2:p:283-306
    DOI: 10.1007/s00186-009-0296-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00186-009-0296-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00186-009-0296-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Durier, Roland & Michelot, Christian, 1985. "Geometrical properties of the Fermat-Weber problem," European Journal of Operational Research, Elsevier, vol. 20(3), pages 332-343, June.
    2. Antonio M. Rodríguez-Chía & Stefan Nickel & Justo Puerto & Francisco R. Fernández, 2000. "A flexible approach to location problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 51(1), pages 69-89, February.
    3. Hamacher, H. W. & Nickel, S., 1996. "Multicriteria planar location problems," European Journal of Operational Research, Elsevier, vol. 94(1), pages 66-86, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kafer, Barbara & Nickel, Stefan, 2001. "Error bounds for the approximative solution of restricted planar location problems," European Journal of Operational Research, Elsevier, vol. 135(1), pages 67-85, November.
    2. Nickel, Stefan, 1998. "Restricted center problems under polyhedral gauges," European Journal of Operational Research, Elsevier, vol. 104(2), pages 343-357, January.
    3. Conde, Eduardo, 2007. "Minmax regret location-allocation problem on a network under uncertainty," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1025-1039, June.
    4. Díaz-Báñez, J.M. & Korman, M. & Pérez-Lantero, P. & Ventura, I., 2013. "The 1-median and 1-highway problem," European Journal of Operational Research, Elsevier, vol. 225(3), pages 552-557.
    5. Carrizosa, Emilio & Rodriguez-Chia, Antonio M., 1997. "Weber problems with alternative transportation systems," European Journal of Operational Research, Elsevier, vol. 97(1), pages 87-93, February.
    6. Jack Brimberg & Robert Love & Nenad Mladenović, 2009. "Extension of the Weiszfeld procedure to a single facility minisum location model with mixed ℓ p norms," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 70(2), pages 269-283, October.
    7. Patricia Domínguez-Marín & Stefan Nickel & Pierre Hansen & Nenad Mladenović, 2005. "Heuristic Procedures for Solving the Discrete Ordered Median Problem," Annals of Operations Research, Springer, vol. 136(1), pages 145-173, April.
    8. Schnepper, Teresa & Klamroth, Kathrin & Stiglmayr, Michael & Puerto, Justo, 2019. "Exact algorithms for handling outliers in center location problems on networks using k-max functions," European Journal of Operational Research, Elsevier, vol. 273(2), pages 441-451.
    9. Romero-Morales, Dolores & Carrizosa, Emilio & Conde, Eduardo, 1997. "Semi-obnoxious location models: A global optimization approach," European Journal of Operational Research, Elsevier, vol. 102(2), pages 295-301, October.
    10. Daniel Scholz, 2010. "The multicriteria big cube small cube method," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(1), pages 286-302, July.
    11. Stefan Nickel & Justo Puerto & Antonio M. Rodriguez-Chia, 2003. "An Approach to Location Models Involving Sets as Existing Facilities," Mathematics of Operations Research, INFORMS, vol. 28(4), pages 693-715, November.
    12. Mark Rozanov & Arie Tamir, 2018. "The nestedness property of location problems on the line," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(2), pages 257-282, July.
    13. Carrizosa, E. & Frenk, J.B.G., 1996. "Dominating Sets for Convex Functions with some Applications," Econometric Institute Research Papers EI 9657-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    14. Avella, P. & Benati, S. & Canovas Martinez, L. & Dalby, K. & Di Girolamo, D. & Dimitrijevic, B. & Ghiani, G. & Giannikos, I. & Guttmann, N. & Hultberg, T. H. & Fliege, J. & Marin, A. & Munoz Marquez, , 1998. "Some personal views on the current state and the future of locational analysis," European Journal of Operational Research, Elsevier, vol. 104(2), pages 269-287, January.
    15. M. Hakan Akyüz & Temel Öncan & İ. Kuban Altınel, 2019. "Branch and bound algorithms for solving the multi-commodity capacitated multi-facility Weber problem," Annals of Operations Research, Springer, vol. 279(1), pages 1-42, August.
    16. Sune Lauth Gadegaard & Andreas Klose & Lars Relund Nielsen, 2018. "A bi-objective approach to discrete cost-bottleneck location problems," Annals of Operations Research, Springer, vol. 267(1), pages 179-201, August.
    17. Emilio Carrizosa & Frank Plastria, 2008. "Optimal Expected-Distance Separating Halfspace," Mathematics of Operations Research, INFORMS, vol. 33(3), pages 662-677, August.
    18. Pawel Kalczynski & Atsuo Suzuki & Zvi Drezner, 2023. "Obnoxious facility location in multiple dimensional space," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(2), pages 331-354, July.
    19. Gert Wanka & Oleg Wilfer, 2017. "Duality results for nonlinear single minimax location problems via multi-composed optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(2), pages 401-439, October.
    20. Blanco, Víctor & Puerto, Justo & Ben-Ali, Safae El-Haj, 2016. "Continuous multifacility ordered median location problems," European Journal of Operational Research, Elsevier, vol. 250(1), pages 56-64.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:71:y:2010:i:2:p:283-306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.