IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v70y2009i2p313-335.html
   My bibliography  Save this article

Recursive functions on the plane and FPTASs for production planning and scheduling problems with two facilities

Author

Listed:
  • Sergei Chubanov
  • Erwin Pesch

Abstract

We consider a production model with two facilities sharing a resource during a time horizon consisting of a number of time periods. Cumulative production levels at the ends of consecutive periods are linked with constraints of a general form. This allows us to give different interpretations related to scheduling and input–output analysis. The model may arise either separately or in the structure of more general production models. In both cases it is reasonable to find an optimal or near-optimal distribution of resources between these two facilities. This helps either to develop a new production plan or to improve an existing one. The problem in question is NP-hard. We show that our approach leads to fully polynomial time approximation schemes (FPTASs). Copyright Springer-Verlag 2009

Suggested Citation

  • Sergei Chubanov & Erwin Pesch, 2009. "Recursive functions on the plane and FPTASs for production planning and scheduling problems with two facilities," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 70(2), pages 313-335, October.
  • Handle: RePEc:spr:mathme:v:70:y:2009:i:2:p:313-335
    DOI: 10.1007/s00186-008-0270-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00186-008-0270-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00186-008-0270-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael H. Rothkopf, 1966. "Scheduling Independent Tasks on Parallel Processors," Management Science, INFORMS, vol. 12(5), pages 437-447, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dunstall, Simon & Wirth, Andrew, 2005. "A comparison of branch-and-bound algorithms for a family scheduling problem with identical parallel machines," European Journal of Operational Research, Elsevier, vol. 167(2), pages 283-296, December.
    2. Bertsimas, Dimitris., 1995. "The achievable region method in the optimal control of queueing systems : formulations, bounds and policies," Working papers 3837-95., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    3. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    4. Slotnick, Susan A., 2011. "Order acceptance and scheduling: A taxonomy and review," European Journal of Operational Research, Elsevier, vol. 212(1), pages 1-11, July.
    5. Huynh Tuong, Nguyen & Soukhal, Ameur & Billaut, Jean-Charles, 2010. "A new dynamic programming formulation for scheduling independent tasks with common due date on parallel machines," European Journal of Operational Research, Elsevier, vol. 202(3), pages 646-653, May.
    6. Azizoglu, Meral & Kirca, Omer, 1999. "On the minimization of total weighted flow time with identical and uniform parallel machines," European Journal of Operational Research, Elsevier, vol. 113(1), pages 91-100, February.
    7. Chung‐Yee Lee & Zhi‐Long Chen, 2000. "Scheduling jobs and maintenance activities on parallel machines," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(2), pages 145-165, March.
    8. Daniel Kowalczyk & Roel Leus, 2018. "A Branch-and-Price Algorithm for Parallel Machine Scheduling Using ZDDs and Generic Branching," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 768-782, November.
    9. Pandelis, Dimitrios G., 2007. "Optimal preemptive scheduling on uniform machines with discounted flowtime objectives," European Journal of Operational Research, Elsevier, vol. 177(1), pages 630-637, February.
    10. Ji, Min & He, Yong & Cheng, T.C.E., 2007. "Batch delivery scheduling with batch delivery cost on a single machine," European Journal of Operational Research, Elsevier, vol. 176(2), pages 745-755, January.
    11. Ji, Min & Cheng, T.C.E., 2010. "Batch scheduling of simple linear deteriorating jobs on a single machine to minimize makespan," European Journal of Operational Research, Elsevier, vol. 202(1), pages 90-98, April.
    12. Lenstra, J. K. & Rinnooy Kan, A. H. G., 1980. "An Introduction To Multiprocessor Scheduling," Econometric Institute Archives 272258, Erasmus University Rotterdam.
    13. Ji-Bo Wang & Ming-Zheng Wang, 2011. "Worst-case behavior of simple sequencing rules in flow shop scheduling with general position-dependent learning effects," Annals of Operations Research, Springer, vol. 191(1), pages 155-169, November.
    14. Li, Gang & Wang, Xiao-Yuan & Wang, Ji-Bo & Sun, Lin-Yan, 2013. "Worst case analysis of flow shop scheduling problems with a time-dependent learning effect," International Journal of Production Economics, Elsevier, vol. 142(1), pages 98-104.
    15. C.A. Glass & C.N. Potts & V.A. Strusevich, 2001. "Scheduling Batches with Sequential Job Processing for Two-Machine Flow and Open Shops," INFORMS Journal on Computing, INFORMS, vol. 13(2), pages 120-137, May.
    16. Schouten, Jop, 2022. "Cooperation, allocation and strategy in interactive decision-making," Other publications TiSEM d5d41448-8033-4f6b-8ec0-c, Tilburg University, School of Economics and Management.
    17. Robbert Fokkink & Thomas Lidbetter & László A. Végh, 2019. "On Submodular Search and Machine Scheduling," Management Science, INFORMS, vol. 44(4), pages 1431-1449, November.
    18. Xiaoqiang Cai & Xiaoqian Sun & Xian Zhou, 2004. "Stochastic scheduling subject to machine breakdowns: The preemptive‐repeat model with discounted reward and other criteria," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(6), pages 800-817, September.
    19. Johnny C. Ho & Yih‐Long Chang, 1991. "Heuristics for minimizing mean tardiness for m parallel machines," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(3), pages 367-381, June.
    20. Szmerekovsky, Joseph G., 2007. "Single machine scheduling under market uncertainty," European Journal of Operational Research, Elsevier, vol. 177(1), pages 163-175, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:70:y:2009:i:2:p:313-335. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.