IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v29y2024i8d10.1007_s11027-024-10186-6.html
   My bibliography  Save this article

What drives the success and failure of climate change adaptation projects? A qualitative comparative analysis

Author

Listed:
  • Grazia Pacillo

    (International Center for Tropical Agriculture)

  • Nam Nguyen

    (Wageningen University)

  • Ekaterina Paustyan

    (Russia Institute, King’s College)

  • Romina Cavatassi

    (World Bank)

  • Margarita Astralaga

    (International Fund for Agricultural Development (IFAD)
    Global Commons Alliance)

  • Peter Läderach

    (International Center for Tropical Agriculture)

Abstract

The ongoing climate crisis is significantly impacting the livelihoods of millions of farmers worldwide. Despite various efforts, many climate adaptation projects have struggled to yield the desired results. What determines the success or failure of these projects? Utilizing Qualitative Comparative Analysis, we delve into the intricate connections among climate patterns, resilience, and adaptation initiatives. Through a case study of the International Fund for Agricultural Development (IFAD) program, we aim to discern critical factors contributing to success or failure. Our findings underscore the importance of integrating climate trends into adaptation strategies, which fosters a deeper comprehension of climate-related risks and bolsters the resilience of smallholder farmers. Notably, no single factor can solely account for success; rather, it is the combined presence or synergy of multiple factors that drive effective adaptation interventions. Key elements include adept project management, improved institutional coordination, scalability of interventions, bolstering beneficiaries’ coping mechanisms, and fostering innovation. It is the harmonious interplay of these components that paves the way for successful outcomes.

Suggested Citation

  • Grazia Pacillo & Nam Nguyen & Ekaterina Paustyan & Romina Cavatassi & Margarita Astralaga & Peter Läderach, 2024. "What drives the success and failure of climate change adaptation projects? A qualitative comparative analysis," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 29(8), pages 1-27, December.
  • Handle: RePEc:spr:masfgc:v:29:y:2024:i:8:d:10.1007_s11027-024-10186-6
    DOI: 10.1007/s11027-024-10186-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11027-024-10186-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11027-024-10186-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rusdy Hartungi, 2007. "Understanding the success factors of micro‐finance institution in a developing country," International Journal of Social Economics, Emerald Group Publishing Limited, vol. 34(6), pages 388-401, May.
    2. Eva Thomann & Martino Maggetti, 2020. "Designing Research With Qualitative Comparative Analysis (QCA): Approaches, Challenges, and Tools," Sociological Methods & Research, , vol. 49(2), pages 356-386, May.
    3. Muhammad Aamir Khan & Alishba Tahir & Nabila Khurshid & Muhammad Iftikhar ul Husnain & Mukhtar Ahmed & Houcine Boughanmi, 2020. "Economic Effects of Climate Change-Induced Loss of Agricultural Production by 2050: A Case Study of Pakistan," Sustainability, MDPI, vol. 12(3), pages 1-17, February.
    4. Rusdy Hartungi, 2007. "Understanding the success factors of micro‐finance institution in a developing country," International Journal of Social Economics, Emerald Group Publishing Limited, vol. 34(6), pages 388-401, May.
    5. A. J. Challinor & J. Watson & D. B. Lobell & S. M. Howden & D. R. Smith & N. Chhetri, 2014. "A meta-analysis of crop yield under climate change and adaptation," Nature Climate Change, Nature, vol. 4(4), pages 287-291, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Namra Ghaffar & Bushra Noreen & Maryam Muhammad Ali & Amna Ali, 2021. "Rice Yield Estimation in Sawat Region Incorporating The Local Physio-Climatic Parameters," International Journal of Agriculture & Sustainable Development, 50sea, vol. 3(2), pages 46-50, June.
    2. Gong, Ziqian & Baker, Justin S. & Wade, Christopher M. & Havlík, Petr, 2024. "Irrigation intensification in U.S. agriculture under climate change – an adaptation mechanism or trade-induced response?," 2024 Annual Meeting, July 28-30, New Orleans, LA 343581, Agricultural and Applied Economics Association.
    3. Dániel Fróna & János Szenderák & Mónika Harangi-Rákos, 2019. "The Challenge of Feeding the World," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    4. Ignaciuk, Ada & Malevolti, Giulia & Scognamillo, Antonio & Sitko, Nicholas J., 2022. "Can food aid relax farmers’ constraints to adopting climate-adaptive agricultural practices? Evidence from Ethiopia, Malawi and the United Republic of Tanzania," ESA Working Papers 324073, Food and Agriculture Organization of the United Nations, Agricultural Development Economics Division (ESA).
    5. Meraj Sarwary & Senthilnathan Samiappan & Ghulam Dastgir Khan & Masaood Moahid, 2023. "Climate Change and Cereal Crops Productivity in Afghanistan: Evidence Based on Panel Regression Model," Sustainability, MDPI, vol. 15(14), pages 1-13, July.
    6. Dilshad Ahmad & Muhammad Afzal & Abdur Rauf, 2019. "Analysis of wheat farmers’ risk perceptions and attitudes: evidence from Punjab, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 95(3), pages 845-861, February.
    7. Francisco Costa & Fabien Forge & Jason Garred & João Paulo Pessoa, 2020. "Climate Change and the Distribution of Agricultural Output," Working Papers 2003E, University of Ottawa, Department of Economics.
    8. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    9. Konrad Prandecki & Edyta Gajos, 2018. "Reductin of greenhouse gases emission and sustainability: The multi-criteria approach," International Conference on Competitiveness of Agro-food and Environmental Economy Proceedings, The Bucharest University of Economic Studies, vol. 7, pages 46-54.
    10. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    11. Gil-Clavel, Sofia & Wagenblast, Thorid & Filatova, Tatiana, 2023. "Farmers’ Incremental and Transformational Climate Change Adaptation in Different Regions: A Natural Language Processing Comparative Literature Review," SocArXiv 3dp5e, Center for Open Science.
    12. Federica Rotondo & Francesca Abastante & Giancarlo Cotella & Isabella Maria Lami, 2020. "Questioning Low-Carbon Transition Governance: A Comparative Analysis of European Case Studies," Sustainability, MDPI, vol. 12(24), pages 1-17, December.
    13. Sabina Thaler & Herbert Formayer & Gerhard Kubu & Miroslav Trnka & Josef Eitzinger, 2021. "Effects of Bias-Corrected Regional Climate Projections and Their Spatial Resolutions on Crop Model Results under Different Climatic and Soil Conditions in Austria," Agriculture, MDPI, vol. 11(11), pages 1-39, October.
    14. Kamdi, Prasad Jairam & Swain, Dillip Kumar & Wani, Suhas P., 2023. "Developing climate change agro-adaptation strategies through field experiments and simulation analyses for sustainable sorghum production in semi-arid tropics of India," Agricultural Water Management, Elsevier, vol. 286(C).
    15. Akpoti, Komlavi & Groen, Thomas & Dossou-Yovo, Elliott & Kabo-bah, Amos T. & Zwart, Sander J., 2022. "Climate change-induced reduction in agricultural land suitability of West-Africa's inland valley landscapes," Agricultural Systems, Elsevier, vol. 200(C).
    16. Angga Pradesha & Sherman Robinson & Mark W. Rosegrant & Nicostrato Perez & Timothy S. Thomas, 2022. "Exploring transformational adaptation strategy through agricultural policy reform in the Philippines," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(6), pages 1435-1447, December.
    17. Chen, Xiaoguang & Khanna, Madhu & Yang, Lu, 2022. "The impacts of temperature on Chinese food processing firms," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(02), January.
    18. Imran, Muhammad Ali & Ali, Asghar & Ashfaq, Muhammad & Hassan, Sarfraz & Culas, Richard & Ma, Chunbo, 2019. "Impact of climate smart agriculture (CSA) through sustainable irrigation management on Resource use efficiency: A sustainable production alternative for cotton," Land Use Policy, Elsevier, vol. 88(C).
    19. Yangjie Huang & Sihui Li & Xiyuan Xiang & Leilei Huang, 2024. "Analyzing the configuration of the National Innovation System for Innovation Capability: evidence from Global Innovation Index reports," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.
    20. Anwar, Muhuddin Rajin & Liu, De Li & Farquharson, Robert & Macadam, Ian & Abadi, Amir & Finlayson, John & Wang, Bin & Ramilan, Thiagarajah, 2015. "Climate change impacts on phenology and yields of five broadacre crops at four climatologically distinct locations in Australia," Agricultural Systems, Elsevier, vol. 132(C), pages 133-144.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:29:y:2024:i:8:d:10.1007_s11027-024-10186-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.