IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v22y2017i5d10.1007_s11027-015-9696-2.html
   My bibliography  Save this article

Assessing high-impact spots of climate change: spatial yield simulations with Decision Support System for Agrotechnology Transfer (DSSAT) model

Author

Listed:
  • Anton Eitzinger

    (CIAT International Center for Tropical Agriculture)

  • Peter Läderach

    (CIAT International Center for Tropical Agriculture)

  • Beatriz Rodriguez

    (CIAT International Center for Tropical Agriculture)

  • Myles Fisher

    (CIAT International Center for Tropical Agriculture)

  • Stephen Beebe

    (CIAT International Center for Tropical Agriculture)

  • Kai Sonder

    (CIMMYT International Maize and Wheat Improvement Center)

  • Axel Schmidt

    (CRS Catholic Relief Services)

Abstract

Drybeans (Phaseolus vulgaris L.) are an important subsistence crop in Central America. Future climate change may threaten drybean production and jeopardize smallholder farmers’ food security. We estimated yield changes in drybeans due to changing climate in these countries using downscaled data from global circulation models (GCMs) in El Salvador, Guatemala, Honduras, and Nicaragua. We generated daily weather data, which we used in the Decision Support System for Agrotechnology Transfer (DSSAT) drybean submodel. We compared different cultivars, soils, and fertilizer options in three planting seasons. We analyzed the simulated yields to spatially classify high-impact spots of climate change across the four countries. The results show a corridor of reduced yields from Lake Nicaragua to central Honduras (10–38 % decrease). Yields increased in the Guatemalan highlands, towards the Atlantic coast, and in southern Nicaragua (10–41 % increase). Some farmers will be able to adapt to climate change, but others will have to change crops, which will require external support. Research institutions will need to devise technologies that allow farmers to adapt and provide policy makers with feasible strategies to implement them.

Suggested Citation

  • Anton Eitzinger & Peter Läderach & Beatriz Rodriguez & Myles Fisher & Stephen Beebe & Kai Sonder & Axel Schmidt, 2017. "Assessing high-impact spots of climate change: spatial yield simulations with Decision Support System for Agrotechnology Transfer (DSSAT) model," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(5), pages 743-760, June.
  • Handle: RePEc:spr:masfgc:v:22:y:2017:i:5:d:10.1007_s11027-015-9696-2
    DOI: 10.1007/s11027-015-9696-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11027-015-9696-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11027-015-9696-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Keating, B. A. & McCown, R. L., 2001. "Advances in farming systems analysis and intervention," Agricultural Systems, Elsevier, vol. 70(2-3), pages 555-579.
    2. McCown, R. L. & Hammer, G. L. & Hargreaves, J. N. G. & Holzworth, D. P. & Freebairn, D. M., 1996. "APSIM: a novel software system for model development, model testing and simulation in agricultural systems research," Agricultural Systems, Elsevier, vol. 50(3), pages 255-271.
    3. Julian Ramirez-Villegas & Mike Salazar & Andy Jarvis & Carlos Navarro-Racines, 2012. "A way forward on adaptation to climate change in Colombian agriculture: perspectives towards 2050," Climatic Change, Springer, vol. 115(3), pages 611-628, December.
    4. Anton Eitzinger & Peter Läderach & Christian Bunn & Audberto Quiroga & Andreas Benedikter & Antonio Pantoja & Jason Gordon & Michele Bruni, 2014. "Implications of a changing climate on food security and smallholders’ livelihoods in Bogotá, Colombia," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(2), pages 161-176, February.
    5. Fox, P. & Rockstrom, J. & Barron, J., 2005. "Risk analysis and economic viability of water harvesting for supplemental irrigation in semi-arid Burkina Faso and Kenya," Agricultural Systems, Elsevier, vol. 83(3), pages 231-250, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rungruang Janta & Laksanara Khwanchum & Pakorn Ditthakit & Nadhir Al-Ansari & Nguyen Thi Thuy Linh, 2022. "Water Yield Alteration in Thailand’s Pak Phanang Basin Due to Impacts of Climate and Land-Use Changes," Sustainability, MDPI, vol. 14(15), pages 1-19, July.
    2. Park, Sugyeong & Chun, Jong Ahn & Kim, Daeha & Sitthikone, Mounlamai, 2022. "Climate risk management for the rainfed rice yield in Lao PDR using APCC MME seasonal forecasts," Agricultural Water Management, Elsevier, vol. 274(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Botero, Hernan & Barnes, Andrew P. & Perez, Lisset & Rios, David & Ramirez-Villegas, Julian, 2021. "The determinants of common bean variety selection and diversification in Colombia," Ecological Economics, Elsevier, vol. 190(C).
    2. Meinke, H. & Baethgen, W. E. & Carberry, P. S. & Donatelli, M. & Hammer, G. L. & Selvaraju, R. & Stockle, C. O., 2001. "Increasing profits and reducing risks in crop production using participatory systems simulation approaches," Agricultural Systems, Elsevier, vol. 70(2-3), pages 493-513.
    3. Anton Eitzinger & Claudia R. Binder & Markus A. Meyer, 2018. "Risk perception and decision-making: do farmers consider risks from climate change?," Climatic Change, Springer, vol. 151(3), pages 507-524, December.
    4. Andrea Bastianin & Alessandro Lanza & Matteo Manera, 2018. "Economic impacts of El Niño southern oscillation: evidence from the Colombian coffee market," Agricultural Economics, International Association of Agricultural Economists, vol. 49(5), pages 623-633, September.
    5. Hutchings, Timothy R., 2009. "A financial analysis of the effect of the mix of crop and sheep enterprises on the risk profile of dryland farms in south-eastern Australia – Part 1," AFBM Journal, Australasian Farm Business Management Network, vol. 6(1), pages 1-16, October.
    6. Negm, L.M. & Youssef, M.A. & Skaggs, R.W. & Chescheir, G.M. & Jones, J., 2014. "DRAINMOD–DSSAT model for simulating hydrology, soil carbon and nitrogen dynamics, and crop growth for drained crop land," Agricultural Water Management, Elsevier, vol. 137(C), pages 30-45.
    7. Jing Wang & Feng Fang & Qiang Zhang & Jinsong Wang & Yubi Yao & Wei Wang, 2016. "Risk evaluation of agricultural disaster impacts on food production in southern China by probability density method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1605-1634, September.
    8. Unknown, 1997. "A New Soil Conservation Methodology and Application to Cropping Systems in Tropical Steeplands: A comparative synthesis of results obtained in ACIAR Project PN 9201," Technical Reports 113906, Australian Centre for International Agricultural Research.
    9. Probert, M. E. & Dimes, J. P. & Keating, B. A. & Dalal, R. C. & Strong, W. M., 1998. "APSIM's water and nitrogen modules and simulation of the dynamics of water and nitrogen in fallow systems," Agricultural Systems, Elsevier, vol. 56(1), pages 1-28, January.
    10. Cabelguenne, M. & Debaeke, P. & Bouniols, A., 1999. "EPICphase, a version of the EPIC model simulating the effects of water and nitrogen stress on biomass and yield, taking account of developmental stages: validation on maize, sunflower, sorghum, soybea," Agricultural Systems, Elsevier, vol. 60(3), pages 175-196, June.
    11. Sanfo, Safiétou & Gérard, Françoise, 2012. "Public policies for rural poverty alleviation: The case of agricultural households in the Plateau Central area of Burkina Faso," Agricultural Systems, Elsevier, vol. 110(C), pages 1-9.
    12. Trinh, Thoai Quang & Rañola, Roberto F. & Camacho, Leni D. & Simelton, Elisabeth, 2018. "Determinants of farmers’ adaptation to climate change in agricultural production in the central region of Vietnam," Land Use Policy, Elsevier, vol. 70(C), pages 224-231.
    13. Wakeyo, Mekonnen B. & Gardebroek, Cornelis, 2013. "Does water harvesting induce fertilizer use among smallholders? Evidence from Ethiopia," Agricultural Systems, Elsevier, vol. 114(C), pages 54-63.
    14. Anwar, Muhuddin Rajin & Liu, De Li & Farquharson, Robert & Macadam, Ian & Abadi, Amir & Finlayson, John & Wang, Bin & Ramilan, Thiagarajah, 2015. "Climate change impacts on phenology and yields of five broadacre crops at four climatologically distinct locations in Australia," Agricultural Systems, Elsevier, vol. 132(C), pages 133-144.
    15. Hua Zhang & Sidai Guo & Yubing Qian & Yan Liu & Chengpeng Lu, 2020. "Dynamic analysis of agricultural carbon emissions efficiency in Chinese provinces along the Belt and Road," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-22, February.
    16. Jha, Pramod & Lakaria, Brij Lal & Vishwakarma, AK & Wanjari, RH & Mohanty, M & Sinha, Nishant K & Somasundaram, J & Dheri, GS & Dwivedi, AK & Sharma, Raj Paul & Singh, Muneshwar & Dalal, RC & Biswas, , 2021. "Modeling the organic carbon dynamics in long-term fertilizer experiments of India using the Rothamsted carbon model," Ecological Modelling, Elsevier, vol. 450(C).
    17. Graham R. Marshall & Kevin A. Parton & G.L. Hammer, 1996. "Risk Attitude, Planting Conditions And The Value Of Seasonal Forecasts To A Dryland Wheat Grower," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 40(3), pages 211-233, December.
    18. Sterk, B. & van Ittersum, M.K. & Leeuwis, C. & Rossing, W.A.H. & van Keulen, H. & van de Ven, G.W.J., 2006. "Finding niches for whole-farm design models - contradictio in terminis?," Agricultural Systems, Elsevier, vol. 87(2), pages 211-228, February.
    19. Kadigi, Ibrahim L. & Richardson, James W. & Mutabazi, Khamaldin D. & Philip, Damas & Mourice, Sixbert K. & Mbungu, Winfred & Bizimana, Jean-Claude & Sieber, Stefan, 2020. "The effect of nitrogen-fertilizer and optimal plant population on the profitability of maize plots in the Wami River sub-basin, Tanzania: A bio-economic simulation approach," Agricultural Systems, Elsevier, vol. 185(C).
    20. Detlefsen, Nina K. & Jensen, Allan Leck, 2007. "Modelling optimal crop sequences using network flows," Agricultural Systems, Elsevier, vol. 94(2), pages 566-572, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:22:y:2017:i:5:d:10.1007_s11027-015-9696-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.