IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v18y2013i5p637-658.html
   My bibliography  Save this article

Meeting emission targets under uncertainty—the case of Finnish non-emission-trading sector

Author

Listed:
  • A. Hast
  • T. Ekholm
  • I. Savolainen

Abstract

The European Union (EU) has set a target to reduce its greenhouse gas (GHG) emissions at least 10 % below the 2005 levels by 2020 in the non-Emission Trading Sector (non-ETS). As part of this, each Member State has a binding national emission limitation target for the non-ETS sector. Finland’s target, examined as a case study in this paper, is to reduce emissions at least 16 % below 2005 levels by 2020. The objective of this study is to find cost optimal mitigation portfolios that meet Finland’s reduction target and to analyze the risks of not attaining the emission target or exceeding the assumed costs. The question was addressed with a stochastic optimization model, Stochastic Optimization of non-ETS Emissions (SONETS) selecting separate mitigation measures that meet the target on expectation. The results show that optimal portfolios include relatively high uncertainty both in costs and achieved reductions. The prices of crude oil and diesel, and the abatement cost of reducing hydrofluorocarbon (HFC) emissions seem to account for the majority of uncertainty regarding total costs. The baseline predictions for various non-ETS subsectors (such as transport and agriculture) were found to have the greatest contribution to the uncertainty of attaining emission target. The results also show that some abatement actions are chosen in nearly all efficient portfolios, while other actions are seldom chosen. For example replacing oil burners in the end of technical life time or recovery of methane (CH 4 ) from waste are often chosen whereas ban of landfilling of organic waste is chosen extremely seldom. It also seems that the results are somewhat sensitive to the inclusion or exclusion of the interdependencies of mitigation measures. Copyright Springer Science+Business Media B.V. 2013

Suggested Citation

  • A. Hast & T. Ekholm & I. Savolainen, 2013. "Meeting emission targets under uncertainty—the case of Finnish non-emission-trading sector," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(5), pages 637-658, June.
  • Handle: RePEc:spr:masfgc:v:18:y:2013:i:5:p:637-658
    DOI: 10.1007/s11027-012-9379-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11027-012-9379-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11027-012-9379-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nordhaus, William D, 1991. "To Slow or Not to Slow: The Economics of the Greenhouse Effect," Economic Journal, Royal Economic Society, vol. 101(407), pages 920-937, July.
    2. Manne, Alan S. & Richels, Richard G., 1991. "Buying greenhouse insurance," Energy Policy, Elsevier, vol. 19(6), pages 543-552.
    3. Soimakallio, S. & Mäkinen, T. & Ekholm, T. & Pahkala, K. & Mikkola, H. & Paappanen, T., 2009. "Greenhouse gas balances of transportation biofuels, electricity and heat generation in Finland--Dealing with the uncertainties," Energy Policy, Elsevier, vol. 37(1), pages 80-90, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Patt, 1997. "Economists and Ecologists: Different Frames of Reference for Global Climate Change," Working Papers ir97056, International Institute for Applied Systems Analysis.
    2. Paul Ekins, 1995. "Rethinking the costs related to global warming: A survey of the issues," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 6(3), pages 231-277, October.
    3. Thirupathi Rao & Siti Indati Mustapa, 2020. "A Review of Climate Economic Models in Malaysia," Sustainability, MDPI, vol. 13(1), pages 1-20, December.
    4. Tommi Ekholm, 2014. "Hedging the climate sensitivity risks of a temperature target," Climatic Change, Springer, vol. 127(2), pages 153-167, November.
    5. Grubb, Michael & Chapuis, Thierry & Duong, Minh Ha, 1995. "The economics of changing course : Implications of adaptability and inertia for optimal climate policy," Energy Policy, Elsevier, vol. 23(4-5), pages 417-431.
    6. Alessandro Moro, 2021. "Can capital controls promote green investments in developing countries?," Temi di discussione (Economic working papers) 1348, Bank of Italy, Economic Research and International Relations Area.
    7. Khanna, Neha & Chapman, Duane, 1997. "Climate Policy and Petroleum Depletion in an Optimal Growth Framework," Staff Papers 121172, Cornell University, Department of Applied Economics and Management.
    8. Richard S.J. Tol, 2003. "The Marginal Costs Of Carbon Dioxide Emissions: An Assessment Of The Uncertainties," Working Papers FNU-19, Research unit Sustainability and Global Change, Hamburg University, revised Apr 2003.
    9. van der Ploeg, Frederick & Rezai, Armon, 2017. "Cumulative emissions, unburnable fossil fuel, and the optimal carbon tax," Technological Forecasting and Social Change, Elsevier, vol. 116(C), pages 216-222.
    10. Bhardwaj, Chandan & Axsen, Jonn & Kern, Florian & McCollum, David, 2020. "Why have multiple climate policies for light-duty vehicles? Policy mix rationales, interactions and research gaps," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 309-326.
    11. Nunes, P.A.L.D. & Nijkamp, P., 2011. "Biodiversity: Economic perspectives," Serie Research Memoranda 0002, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    12. João Tovar Jalles, 2024. "Financial Crises and Climate Change," Comparative Economic Studies, Palgrave Macmillan;Association for Comparative Economic Studies, vol. 66(1), pages 166-190, March.
    13. Oliver Fromm, 2000. "Ecological Structure and Functions of Biodiversity as Elements of Its Total Economic Value," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 16(3), pages 303-328, July.
    14. Jie Yan & Ruiliang Wang, 2024. "Green Fiscal and Tax Policies in China: An Environmental Dynamic Stochastic General Equilibrium Approach," Sustainability, MDPI, vol. 16(9), pages 1-24, April.
    15. Acharjee, Ashis & Chakraborti, Prasun, 2024. "Study and development of a logical model for an ORC based district heating renewable energy system considering discrete analysis," Energy, Elsevier, vol. 298(C).
    16. Patrick Gruning, 2022. "Fiscal, Environmental, and Bank Regulation Policies in a Small Open Economy for the Green Transition," Working Papers 2022/06, Latvijas Banka.
    17. Kirkinen, Johanna & Soimakallio, Sampo & Mäkinen, Tuula & Savolainen, Ilkka, 2010. "Greenhouse impact assessment of peat-based Fischer-Tropsch diesel life-cycle," Energy Policy, Elsevier, vol. 38(1), pages 301-311, January.
    18. Jonghyun Yoo & Robert Mendelsohn, 2018. "Sensitivity Of Mitigation To The Optimal Global Temperature: An Experiment With Dice," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 9(02), pages 1-8, May.
    19. W. J. Wouter Botzen & Jeroen C. J. M. Van Den Bergh & Graciela Chichilnisky, 2018. "Climate Policy Without Intertemporal Dictatorship: Chichilnisky Criterion Versus Classical Utilitarianism In Dice," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 9(02), pages 1-17, May.
    20. Karp, Larry & Liu, Xuemei, 1999. "Valuing Tradeable CO2 Permits for OECD Countries," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt5dv5c8hr, Department of Agricultural & Resource Economics, UC Berkeley.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:18:y:2013:i:5:p:637-658. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.