IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37172-x.html
   My bibliography  Save this article

Mid-latitudinal habitable environment for marine eukaryotes during the waning stage of the Marinoan snowball glaciation

Author

Listed:
  • Huyue Song

    (China University of Geosciences)

  • Zhihui An

    (Wuhan Center of China Geological Survey)

  • Qin Ye

    (China University of Geosciences)

  • Eva E. Stüeken

    (University of St. Andrews)

  • Jing Li

    (China University of Geosciences)

  • Jun Hu

    (China University of Geosciences)

  • Thomas J. Algeo

    (China University of Geosciences
    China University of Geosciences
    University of Cincinnati)

  • Li Tian

    (China University of Geosciences)

  • Daoliang Chu

    (China University of Geosciences)

  • Haijun Song

    (China University of Geosciences)

  • Shuhai Xiao

    (Virginia Tech)

  • Jinnan Tong

    (China University of Geosciences)

Abstract

During the Marinoan Ice Age (ca. 654–635 Ma), one of the ‘Snowball Earth’ events in the Cryogenian Period, continental icesheets reached the tropical oceans. Oceanic refugia must have existed for aerobic marine eukaryotes to survive this event, as evidenced by benthic phototrophic macroalgae of the Songluo Biota preserved in black shales interbedded with glacial diamictites of the late Cryogenian Nantuo Formation in South China. However, the environmental conditions that allowed these organisms to thrive are poorly known. Here, we report carbon-nitrogen-iron geochemical data from the fossiliferous black shales and adjacent diamictites of the Nantuo Formation. Iron-speciation data document dysoxic-anoxic conditions in bottom waters, whereas nitrogen isotopes record aerobic nitrogen cycling perhaps in surface waters. These findings indicate that habitable open-ocean conditions were more extensive than previously thought, extending into mid-latitude coastal oceans and providing refugia for eukaryotic organisms during the waning stage of the Marinoan Ice Age.

Suggested Citation

  • Huyue Song & Zhihui An & Qin Ye & Eva E. Stüeken & Jing Li & Jun Hu & Thomas J. Algeo & Li Tian & Daoliang Chu & Haijun Song & Shuhai Xiao & Jinnan Tong, 2023. "Mid-latitudinal habitable environment for marine eukaryotes during the waning stage of the Marinoan snowball glaciation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37172-x
    DOI: 10.1038/s41467-023-37172-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37172-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37172-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xianguo Lang & Bing Shen & Yongbo Peng & Shuhai Xiao & Chuanming Zhou & Huiming Bao & Alan Jay Kaufman & Kangjun Huang & Peter W. Crockford & Yonggang Liu & Wenbo Tang & Haoran Ma, 2018. "Transient marine euxinia at the end of the terminal Cryogenian glaciation," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    2. Benjamin W. Johnson & Simon W. Poulton & Colin Goldblatt, 2017. "Marine oxygen production and open water supported an active nitrogen cycle during the Marinoan Snowball Earth," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    3. Charles H. Wellman & Peter L. Osterloff & Uzma Mohiuddin, 2003. "Fragments of the earliest land plants," Nature, Nature, vol. 425(6955), pages 282-285, September.
    4. Gordon D. Love & Emmanuelle Grosjean & Charlotte Stalvies & David A. Fike & John P. Grotzinger & Alexander S. Bradley & Amy E. Kelly & Maya Bhatia & William Meredith & Colin E. Snape & Samuel A. Bowri, 2009. "Fossil steroids record the appearance of Demospongiae during the Cryogenian period," Nature, Nature, vol. 457(7230), pages 718-721, February.
    5. Tian Gan & Taiyi Luo & Ke Pang & Chuanming Zhou & Guanghong Zhou & Bin Wan & Gang Li & Qiru Yi & Andrew D. Czaja & Shuhai Xiao, 2021. "Cryptic terrestrial fungus-like fossils of the early Ediacaran Period," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    6. Jochen J. Brocks & Amber J. M. Jarrett & Eva Sirantoine & Christian Hallmann & Yosuke Hoshino & Tharika Liyanage, 2017. "The rise of algae in Cryogenian oceans and the emergence of animals," Nature, Nature, vol. 548(7669), pages 578-581, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Trent B. Thomas & David C. Catling, 2024. "Three-stage formation of cap carbonates after Marinoan snowball glaciation consistent with depositional timescales and geochemistry," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Malory O. Brown & Babatunde O. Olagunju & José-Luis Giner & Paula V. Welander, 2023. "Sterol methyltransferases in uncultured bacteria complicate eukaryotic biomarker interpretations," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. T. Brunoir & C. Mulligan & A. Sistiaga & K. M. Vuu & P. M. Shih & S. S. O’Reilly & R. E. Summons & D. A. Gold, 2023. "Common origin of sterol biosynthesis points to a feeding strategy shift in Neoproterozoic animals," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Zhiping Yang & Xiaoya Ma & Qiuping Wang & Xiaolin Tian & Jingyan Sun & Zhenhua Zhang & Shuhai Xiao & Olivier Clerck & Frederik Leliaert & Bojian Zhong, 2023. "Phylotranscriptomics unveil a Paleoproterozoic-Mesoproterozoic origin and deep relationships of the Viridiplantae," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Wang Zheng & Anwen Zhou & Swapan K. Sahoo & Morrison R. Nolan & Chadlin M. Ostrander & Ruoyu Sun & Ariel D. Anbar & Shuhai Xiao & Jiubin Chen, 2023. "Recurrent photic zone euxinia limited ocean oxygenation and animal evolution during the Ediacaran," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Russell Chapman, 2013. "Algae: the world’s most important “plants”—an introduction," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(1), pages 5-12, January.
    6. Kang, Shijie & Zhang, Shijing & Wang, Zhendong & Li, Shengli & Zhao, Fangci & Yang, Jie & Zhou, Lingbo & Deng, Yang & Sun, Guidong & Yu, Hongdong, 2023. "Highly efficient catalytic pyrolysis of oil shale by CaCl2 in subcritical water," Energy, Elsevier, vol. 274(C).
    7. Jikun Liu & Litao Wang & Fei Chen & Wenya Hu & Chenglong Dong & Yinghao Wang & Yehua Han, 2023. "Molecular Characterization of Hydrocarbons in Petroleum by Ultrahigh-Resolution Mass Spectrometry," Energies, MDPI, vol. 16(11), pages 1-16, May.
    8. Lennart Ramme & Tatiana Ilyina & Jochem Marotzke, 2024. "Moderate greenhouse climate and rapid carbonate formation after Marinoan snowball Earth," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Katsuhiko Shimizu & Michika Nishi & Yuto Sakate & Haruka Kawanami & Tomohiro Bito & Jiro Arima & Laia Leria & Manuel Maldonado, 2024. "Silica-associated proteins from hexactinellid sponges support an alternative evolutionary scenario for biomineralization in Porifera," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    10. Qiao Wen Tan & Peng Ken Lim & Zhong Chen & Asher Pasha & Nicholas Provart & Marius Arend & Zoran Nikoloski & Marek Mutwil, 2023. "Cross-stress gene expression atlas of Marchantia polymorpha reveals the hierarchy and regulatory principles of abiotic stress responses," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    11. Malcolm S Hill & April L Hill & Jose Lopez & Kevin J Peterson & Shirley Pomponi & Maria C Diaz & Robert W Thacker & Maja Adamska & Nicole Boury-Esnault & Paco Cárdenas & Andia Chaves-Fonnegra & Elizab, 2013. "Reconstruction of Family-Level Phylogenetic Relationships within Demospongiae (Porifera) Using Nuclear Encoded Housekeeping Genes," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-16, January.
    12. Zheng Hou & Xiaoya Ma & Xuan Shi & Xi Li & Lingxiao Yang & Shuhai Xiao & Olivier Clerck & Frederik Leliaert & Bojian Zhong, 2022. "Phylotranscriptomic insights into a Mesoproterozoic–Neoproterozoic origin and early radiation of green seaweeds (Ulvophyceae)," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37172-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.