IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v78y2008i16p2559-2566.html
   My bibliography  Save this article

Inference in the additive risk model with time-varying covariates subject to measurement errors

Author

Listed:
  • Sun, Liuquan
  • Zhou, Xian

Abstract

For the additive risk model with time-varying covariates which are subject to measurement errors, we study the estimation of both regression parameters and cumulative baseline hazard function. We first develop a procedure to estimate the regression parameters by correcting the bias of the naive estimator, and provide the large-sample properties of the bias-adjusted estimators. The procedure can be repeated to further improve the accuracy of the estimator. We then construct a corresponding estimator for the cumulative baseline hazard function and derive its asymptotic properties. Based on these results, confidence bands are constructed for the cumulative hazard function as well as the survival function. Monte Carlo studies are conducted to evaluate the performance of these estimators.

Suggested Citation

  • Sun, Liuquan & Zhou, Xian, 2008. "Inference in the additive risk model with time-varying covariates subject to measurement errors," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2559-2566, November.
  • Handle: RePEc:eee:stapro:v:78:y:2008:i:16:p:2559-2566
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(08)00307-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanlin Tang & Xinyuan Song & Grace Yun Yi, 2022. "Bayesian analysis under accelerated failure time models with error-prone time-to-event outcomes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(1), pages 139-168, January.
    2. Sandip Barui & Grace Y. Yi, 2020. "Semiparametric methods for survival data with measurement error under additive hazards cure rate models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(3), pages 421-450, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:78:y:2008:i:16:p:2559-2566. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.