IDEAS home Printed from https://ideas.repec.org/a/spr/jstada/v7y2020i1d10.1186_s40488-020-00107-8.html
   My bibliography  Save this article

Generalized logistic distribution and its regression model

Author

Listed:
  • Mohammad A. Aljarrah

    (Tafila Technical University)

  • Felix Famoye

    (Central Michigan University)

  • Carl Lee

    (Central Michigan University)

Abstract

A new generalized asymmetric logistic distribution is defined. In some cases, existing three parameter distributions provide poor fit to heavy tailed data sets. The proposed new distribution consists of only three parameters and is shown to fit a much wider range of heavy left and right tailed data when compared with various existing distributions. The new generalized distribution has logistic, maximum and minimum Gumbel distributions as sub-models. Some properties of the new distribution including mode, skewness, kurtosis, hazard function, and moments are studied. We propose the method of maximum likelihood to estimate the parameters and assess the finite sample size performance of the method. A generalized logistic regression model, based on the new distribution, is presented. Logistic-log-logistic regression, Weibull-extreme value regression and log-Fréchet regression are special cases of the generalized logistic regression model. The model is applied to fit failure time of a new insulation technique and the survival of a heart transplant study.

Suggested Citation

  • Mohammad A. Aljarrah & Felix Famoye & Carl Lee, 2020. "Generalized logistic distribution and its regression model," Journal of Statistical Distributions and Applications, Springer, vol. 7(1), pages 1-21, December.
  • Handle: RePEc:spr:jstada:v:7:y:2020:i:1:d:10.1186_s40488-020-00107-8
    DOI: 10.1186/s40488-020-00107-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s40488-020-00107-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1186/s40488-020-00107-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Saralees Nadarajah, 2009. "The skew logistic distribution," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 93(2), pages 187-203, June.
    2. Mohammad A. Aljarrah & Felix Famoye & Carl Lee, 2019. "A new generalized normal distribution: Properties and applications," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 48(18), pages 4474-4491, September.
    3. Ayman Alzaatreh & Carl Lee & Felix Famoye, 2013. "A new method for generating families of continuous distributions," METRON, Springer;Sapienza Università di Roma, vol. 71(1), pages 63-79, June.
    4. Kahadawala Cooray, 2010. "Generalized Gumbel distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(1), pages 171-179.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmad Abubakar Suleiman & Hanita Daud & Narinderjit Singh Sawaran Singh & Mahmod Othman & Aliyu Ismail Ishaq & Rajalingam Sokkalingam, 2023. "A Novel Odd Beta Prime-Logistic Distribution: Desirable Mathematical Properties and Applications to Engineering and Environmental Data," Sustainability, MDPI, vol. 15(13), pages 1-25, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmad Abubakar Suleiman & Hanita Daud & Narinderjit Singh Sawaran Singh & Mahmod Othman & Aliyu Ismail Ishaq & Rajalingam Sokkalingam, 2023. "A Novel Odd Beta Prime-Logistic Distribution: Desirable Mathematical Properties and Applications to Engineering and Environmental Data," Sustainability, MDPI, vol. 15(13), pages 1-25, June.
    2. Fastel Chipepa & Broderick Oluyede & Boikanyo Makubate, 2020. "The Topp-Leone Marshall-Olkin-G Family of Distributions With Applications," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 9(4), pages 1-15, July.
    3. Boikanyo Makubate & Fastel Chipepa & Broderick Oluyede & Peter O. Peter, 2021. "The Marshall-Olkin Half Logistic-G Family of Distributions With Applications," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(2), pages 120-120, March.
    4. Isaac E. Cortés & Osvaldo Venegas & Héctor W. Gómez, 2022. "A Symmetric/Asymmetric Bimodal Extension Based on the Logistic Distribution: Properties, Simulation and Applications," Mathematics, MDPI, vol. 10(12), pages 1-17, June.
    5. Mahmoud Aldeni & Carl Lee & Felix Famoye, 2017. "Families of distributions arising from the quantile of generalized lambda distribution," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-18, December.
    6. Ramadan A. ZeinEldin & Christophe Chesneau & Farrukh Jamal & Mohammed Elgarhy, 2019. "Statistical Properties and Different Methods of Estimation for Type I Half Logistic Inverted Kumaraswamy Distribution," Mathematics, MDPI, vol. 7(10), pages 1-24, October.
    7. Louis Geiler & Séverine Affeldt & Mohamed Nadif, 2022. "A survey on machine learning methods for churn prediction," Post-Print hal-03824873, HAL.
    8. A. A. Ogunde & S. T. Fayose & B. Ajayi & D. O. Omosigho, 2020. "Properties, Inference and Applications of Alpha Power Extended Inverted Weibull Distribution," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 9(6), pages 1-90, November.
    9. Sajid Hussain & Mahmood Ul Hassan & Muhammad Sajid Rashid & Rashid Ahmed, 2023. "The Exponentiated Power Alpha Index Generalized Family of Distributions: Properties and Applications," Mathematics, MDPI, vol. 11(4), pages 1-19, February.
    10. Abdulhakim A. Al-Babtain & Ibrahim Elbatal & Christophe Chesneau & Farrukh Jamal, 2020. "Box-Cox Gamma-G Family of Distributions: Theory and Applications," Mathematics, MDPI, vol. 8(10), pages 1-24, October.
    11. Showkat Ahmad Lone & Tabassum Naz Sindhu & Marwa K. H. Hassan & Tahani A. Abushal & Sadia Anwar & Anum Shafiq, 2023. "Theoretical Structure and Applications of a Newly Enhanced Gumbel Type II Model," Mathematics, MDPI, vol. 11(8), pages 1-18, April.
    12. Jiong Liu & R. A. Serota, 2023. "Rethinking Generalized Beta family of distributions," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(2), pages 1-14, February.
    13. Amal S. Hassan & Said G. Nassr, 2019. "Power Lindley-G Family of Distributions," Annals of Data Science, Springer, vol. 6(2), pages 189-210, June.
    14. Mohamed S. Eliwa & Muhammad H. Tahir & Muhammad A. Hussain & Bader Almohaimeed & Afrah Al-Bossly & Mahmoud El-Morshedy, 2023. "Univariate Probability-G Classes for Scattered Samples under Different Forms of Hazard: Continuous and Discrete Version with Their Inferences Tests," Mathematics, MDPI, vol. 11(13), pages 1-24, June.
    15. Hesham Reyad & Mustafa Ç. Korkmaz & Ahmed Z. Afify & G. G. Hamedani & Soha Othman, 2021. "The Fréchet Topp Leone-G Family of Distributions: Properties, Characterizations and Applications," Annals of Data Science, Springer, vol. 8(2), pages 345-366, June.
    16. Ahmad Alzaghal & Duha Hamed, 2019. "New Families of Generalized Lomax Distributions: Properties and Applications," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 8(6), pages 1-51, November.
    17. Rana Muhammad Usman & Maryam Ilyas, 2024. "Power Burr X-T family of distributions: properties, estimation methods and real-life applications," Computational Statistics, Springer, vol. 39(6), pages 2949-2974, September.
    18. Nicollas S. S. da Costa & Maria do Carmo Soares de Lima & Gauss Moutinho Cordeiro, 2024. "A Bimodal Exponential Regression Model for Analyzing Dengue Fever Case Rates in the Federal District of Brazil," Mathematics, MDPI, vol. 12(21), pages 1-20, October.
    19. Indranil Ghosh & Saralees Nadarajah, 2017. "On some further properties and application of Weibull-R family of distributions," Papers 1711.00171, arXiv.org.
    20. Fiaz Ahmad Bhatti & G. G. Hamedani & Mustafa Ç. Korkmaz & Munir Ahmad, 2018. "The transmuted geometric-quadratic hazard rate distribution: development, properties, characterizations and applications," Journal of Statistical Distributions and Applications, Springer, vol. 5(1), pages 1-23, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jstada:v:7:y:2020:i:1:d:10.1186_s40488-020-00107-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.