IDEAS home Printed from https://ideas.repec.org/a/spr/jsched/v27y2024i6d10.1007_s10951-024-00814-z.html
   My bibliography  Save this article

Minimizing the earliness–tardiness for the customer order scheduling problem in a dedicated machine environment

Author

Listed:
  • Julius Hoffmann

    (TU Dresden
    Karlsruhe Institute of Technology)

  • Janis S. Neufeld

    (TU Dresden
    Otto-von-Guericke-Universität Magdeburg)

  • Udo Buscher

    (TU Dresden)

Abstract

The customer order scheduling problem has garnered considerable attention in the recent scheduling literature. It is assumed that each of several customer orders consists of several jobs, and each customer order is completed only if each job of the order is completed. In this paper, we consider the customer order scheduling problem in a machine environment where each customer places exactly one job on each machine. The objective is to minimize the earliness–tardiness, where tardiness is defined as the time an order is finished past its due date, and earliness is the time a job is finished before its due date or the completion time of the corresponding order, whichever is later. Even though the earliness–tardiness criterion is an important objective for just-in-time production, this problem has not been studied in the context of the customer order scheduling problem. We provide a mixed-integer linear programming (MILP) formulation for this problem and derive multiple problem properties. Furthermore, we develop six different heuristics for this problem configuration. They follow the structure of the iterated greedy algorithm and additionally use a refinement function in which they differ. In a computational experiment, the algorithms were compared with each other and outperformed a solver solution of the MILP, which proves their ability to efficiently solve the problem configuration.

Suggested Citation

  • Julius Hoffmann & Janis S. Neufeld & Udo Buscher, 2024. "Minimizing the earliness–tardiness for the customer order scheduling problem in a dedicated machine environment," Journal of Scheduling, Springer, vol. 27(6), pages 525-543, December.
  • Handle: RePEc:spr:jsched:v:27:y:2024:i:6:d:10.1007_s10951-024-00814-z
    DOI: 10.1007/s10951-024-00814-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10951-024-00814-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10951-024-00814-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Ik Sun, 2013. "Minimizing total tardiness for the order scheduling problem," International Journal of Production Economics, Elsevier, vol. 144(1), pages 128-134.
    2. Arthur Kramer & Anand Subramanian, 2019. "A unified heuristic and an annotated bibliography for a large class of earliness–tardiness scheduling problems," Journal of Scheduling, Springer, vol. 22(1), pages 21-57, February.
    3. Debiao Li & Sang Won Yoon, 2015. "A novel fill-time window minimisation problem and adaptive parallel tabu search algorithm in mail-order pharmacy automation system," International Journal of Production Research, Taylor & Francis Journals, vol. 53(14), pages 4189-4205, July.
    4. Leung, Joseph Y.-T. & Lee, C.Y. & Ng, C.W. & Young, G.H., 2008. "Preemptive multiprocessor order scheduling to minimize total weighted flowtime," European Journal of Operational Research, Elsevier, vol. 190(1), pages 40-51, October.
    5. Framinan, Jose M. & Perez-Gonzalez, Paz, 2018. "Order scheduling with tardiness objective: Improved approximate solutions," European Journal of Operational Research, Elsevier, vol. 266(3), pages 840-850.
    6. Joseph Leung & Haibing Li & Michael Pinedo, 2008. "Scheduling orders on either dedicated or flexible machines in parallel to minimize total weighted completion time," Annals of Operations Research, Springer, vol. 159(1), pages 107-123, March.
    7. Zhongshun Shi & Zewen Huang & Leyuan Shi, 2018. "Customer order scheduling on batch processing machines with incompatible job families," International Journal of Production Research, Taylor & Francis Journals, vol. 56(1-2), pages 795-808, January.
    8. Chin-Chia Wu & Jatinder N. D. Gupta & Win-Chin Lin & Shuenn-Ren Cheng & Yen-Lin Chiu & Juin-Han Chen & Long-Yuan Lee, 2022. "Robust Scheduling of Two-Agent Customer Orders with Scenario-Dependent Component Processing Times and Release Dates," Mathematics, MDPI, vol. 10(9), pages 1-17, May.
    9. Lung-Yu Li & Jian-You Xu & Shuenn-Ren Cheng & Xingong Zhang & Win-Chin Lin & Jia-Cheng Lin & Zong-Lin Wu & Chin-Chia Wu, 2022. "A Genetic Hyper-Heuristic for an Order Scheduling Problem with Two Scenario-Dependent Parameters in a Parallel-Machine Environment," Mathematics, MDPI, vol. 10(21), pages 1-22, November.
    10. Framinan, Jose M. & Perez-Gonzalez, Paz & Fernandez-Viagas, Victor, 2019. "Deterministic assembly scheduling problems: A review and classification of concurrent-type scheduling models and solution procedures," European Journal of Operational Research, Elsevier, vol. 273(2), pages 401-417.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren-Xia Chen & Shi-Sheng Li, 2020. "Minimizing maximum delivery completion time for order scheduling with rejection," Journal of Combinatorial Optimization, Springer, vol. 40(4), pages 1044-1064, November.
    2. Framinan, Jose M. & Perez-Gonzalez, Paz & Fernandez-Viagas, Victor, 2019. "Deterministic assembly scheduling problems: A review and classification of concurrent-type scheduling models and solution procedures," European Journal of Operational Research, Elsevier, vol. 273(2), pages 401-417.
    3. Lung-Yu Li & Jian-You Xu & Shuenn-Ren Cheng & Xingong Zhang & Win-Chin Lin & Jia-Cheng Lin & Zong-Lin Wu & Chin-Chia Wu, 2022. "A Genetic Hyper-Heuristic for an Order Scheduling Problem with Two Scenario-Dependent Parameters in a Parallel-Machine Environment," Mathematics, MDPI, vol. 10(21), pages 1-22, November.
    4. Husam Dauod & Nieqing Cao & Debiao Li & Jaehee Kim & Sang Won Yoon & Daehan Won, 2023. "An Order Scheduling Heuristic to Minimize the Total Collation Delays and the Makespan in High-Throughput Make-to-Order Manufacturing Systems," SN Operations Research Forum, Springer, vol. 4(2), pages 1-23, June.
    5. Lee, Ik Sun, 2013. "Minimizing total tardiness for the order scheduling problem," International Journal of Production Economics, Elsevier, vol. 144(1), pages 128-134.
    6. Radosław Rudek, 2012. "Scheduling problems with position dependent job processing times: computational complexity results," Annals of Operations Research, Springer, vol. 196(1), pages 491-516, July.
    7. Onder Aydemir, 2021. "A New Performance Evaluation Metric for Classifiers: Polygon Area Metric," Journal of Classification, Springer;The Classification Society, vol. 38(1), pages 16-26, April.
    8. Chin-Chia Wu & Jatinder N. D. Gupta & Win-Chin Lin & Shuenn-Ren Cheng & Yen-Lin Chiu & Juin-Han Chen & Long-Yuan Lee, 2022. "Robust Scheduling of Two-Agent Customer Orders with Scenario-Dependent Component Processing Times and Release Dates," Mathematics, MDPI, vol. 10(9), pages 1-17, May.
    9. Kramer, Arthur & Iori, Manuel & Lacomme, Philippe, 2021. "Mathematical formulations for scheduling jobs on identical parallel machines with family setup times and total weighted completion time minimization," European Journal of Operational Research, Elsevier, vol. 289(3), pages 825-840.
    10. Falq, Anne-Elisabeth & Fouilhoux, Pierre & Kedad-Sidhoum, Safia, 2022. "Dominance inequalities for scheduling around an unrestrictive common due date," European Journal of Operational Research, Elsevier, vol. 296(2), pages 453-464.
    11. Gang Xuan & Win-Chin Lin & Shuenn-Ren Cheng & Wei-Lun Shen & Po-An Pan & Chih-Ling Kuo & Chin-Chia Wu, 2022. "A Robust Single-Machine Scheduling Problem with Two Job Parameter Scenarios," Mathematics, MDPI, vol. 10(13), pages 1-17, June.
    12. Setareh Boshrouei Shargh & Mostafa Zandieh & Ashkan Ayough & Farbod Farhadi, 2024. "Scheduling in services: a review and bibliometric analysis," Operations Management Research, Springer, vol. 17(2), pages 754-783, June.
    13. Framinan, Jose M. & Perez-Gonzalez, Paz, 2018. "Order scheduling with tardiness objective: Improved approximate solutions," European Journal of Operational Research, Elsevier, vol. 266(3), pages 840-850.
    14. Zikai Zhang & Qiuhua Tang, 2022. "Integrating preventive maintenance to two-stage assembly flow shop scheduling: MILP model, constructive heuristics and meta-heuristics," Flexible Services and Manufacturing Journal, Springer, vol. 34(1), pages 156-203, March.
    15. Mac Cawley, Alejandro & Maturana, Sergio & Pascual, Rodrigo & Tortorella, Guilherme Luz, 2022. "Scheduling wine bottling operations with multiple lines and sequence-dependent set-up times: Robust formulation and a decomposition solution approach," European Journal of Operational Research, Elsevier, vol. 303(2), pages 819-839.
    16. Teobaldo Bulhões & Ruslan Sadykov & Anand Subramanian & Eduardo Uchoa, 2020. "On the exact solution of a large class of parallel machine scheduling problems," Journal of Scheduling, Springer, vol. 23(4), pages 411-429, August.
    17. Alidaee, Bahram & Li, Haitao & Wang, Haibo & Womer, Keith, 2021. "Integer programming formulations in sequencing with total earliness and tardiness penalties, arbitrary due dates, and no idle time: A concise review and extension," Omega, Elsevier, vol. 103(C).
    18. Wang Hong Li & Liang Liang & Sonia Valeria Avilés-Sacoto & Raha Imanirad & Wade D. Cook & Joe Zhu, 2017. "Modeling efficiency in the presence of multiple partial input to output processes," Annals of Operations Research, Springer, vol. 250(1), pages 235-248, March.
    19. Shaojun Lu & Jun Pei & Xinbao Liu & Xiaofei Qian & Nenad Mladenovic & Panos M. Pardalos, 2020. "Less is more: variable neighborhood search for integrated production and assembly in smart manufacturing," Journal of Scheduling, Springer, vol. 23(6), pages 649-664, December.
    20. Fernandez-Viagas, Victor & Talens, Carla & Framinan, Jose M., 2022. "Assembly flowshop scheduling problem: Speed-up procedure and computational evaluation," European Journal of Operational Research, Elsevier, vol. 299(3), pages 869-882.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jsched:v:27:y:2024:i:6:d:10.1007_s10951-024-00814-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.