IDEAS home Printed from https://ideas.repec.org/a/spr/jsched/v23y2020i5d10.1007_s10951-020-00659-2.html
   My bibliography  Save this article

A decomposition heuristic for rotational workforce scheduling

Author

Listed:
  • Tristan Becker

    (RWTH Aachen University, School of Business and Economics, Chair of Operations Management)

Abstract

In rotational workforce planning, a schedule is constructed from a sequence of work and rest periods. Each employee starts at a different part of the schedule, and after a certain amount of time, the schedule repeats. The length of the schedule increases with a higher number of employees. At the same time, various constraints on work sequences and days off have to be considered. For a large number of employees, it is difficult to construct a schedule that meets the requirements. It is important to ensure low solution times independently of the problem instance characteristics. In this work, a novel decomposition approach for rotational shift scheduling is proposed. The decomposition exploits the fact that most constraints in rotational workforce scheduling are imposed on the work shift sequence. By considering a fixed set of blocks to cover the demand, the problem complexity can be greatly reduced. Given a fixed set of blocks, we propose a network model that determines whether a feasible sequence of shift blocks exists. The decomposition approach is applied to the problem structure of the Rotating Workforce Scheduling Problem but may be extended to different problem structures. In a computational study, the decomposition approach is compared to a mathematical formulation and previous exact and heuristic approaches. Computational results show that the decomposition approach greatly outperforms previous heuristics on the standard benchmarks.

Suggested Citation

  • Tristan Becker, 2020. "A decomposition heuristic for rotational workforce scheduling," Journal of Scheduling, Springer, vol. 23(5), pages 539-554, October.
  • Handle: RePEc:spr:jsched:v:23:y:2020:i:5:d:10.1007_s10951-020-00659-2
    DOI: 10.1007/s10951-020-00659-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10951-020-00659-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10951-020-00659-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brucker, Peter & Qu, Rong & Burke, Edmund, 2011. "Personnel scheduling: Models and complexity," European Journal of Operational Research, Elsevier, vol. 210(3), pages 467-473, May.
    2. F. Carrabs & R. Cerulli & R. Pentangelo & A. Raiconi, 2018. "A two-level metaheuristic for the all colors shortest path problem," Computational Optimization and Applications, Springer, vol. 71(2), pages 525-551, November.
    3. Marta Rocha & José Oliveira & Maria Carravilla, 2014. "A constructive heuristic for staff scheduling in the glass industry," Annals of Operations Research, Springer, vol. 217(1), pages 463-478, June.
    4. John J. Bartholdi & James B. Orlin & H. Donald Ratliff, 1980. "Cyclic Scheduling via Integer Programs with Circular Ones," Operations Research, INFORMS, vol. 28(5), pages 1074-1085, October.
    5. Ernst, A. T. & Jiang, H. & Krishnamoorthy, M. & Sier, D., 2004. "Staff scheduling and rostering: A review of applications, methods and models," European Journal of Operational Research, Elsevier, vol. 153(1), pages 3-27, February.
    6. G Laporte, 1999. "The art and science of designing rotating schedules," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(10), pages 1011-1017, October.
    7. Millar, Harvey H. & Kiragu, Mona, 1998. "Cyclic and non-cyclic scheduling of 12 h shift nurses by network programming," European Journal of Operational Research, Elsevier, vol. 104(3), pages 582-592, February.
    8. Ferdinand Kiermaier & Markus Frey & Jonathan F. Bard, 2016. "Flexible cyclic rostering in the service industry," IISE Transactions, Taylor & Francis Journals, vol. 48(12), pages 1139-1155, December.
    9. Van den Bergh, Jorne & Beliën, Jeroen & De Bruecker, Philippe & Demeulemeester, Erik & De Boeck, Liesje, 2013. "Personnel scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 226(3), pages 367-385.
    10. Tristan Becker & Pia Mareike Steenweg & Brigitte Werners, 2019. "Cyclic shift scheduling with on-call duties for emergency medical services," Health Care Management Science, Springer, vol. 22(4), pages 676-690, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tristan Becker & Maximilian Schiffer & Grit Walther, 2022. "A General Branch-and-Cut Framework for Rotating Workforce Scheduling," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1548-1564, May.
    2. Wu, Zhiying & Xu, Guoning & Chen, Qingxin & Mao, Ning, 2023. "Two stochastic optimization methods for shift design with uncertain demand," Omega, Elsevier, vol. 115(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tristan Becker & Pia Mareike Steenweg & Brigitte Werners, 2019. "Cyclic shift scheduling with on-call duties for emergency medical services," Health Care Management Science, Springer, vol. 22(4), pages 676-690, December.
    2. Tristan Becker & Maximilian Schiffer & Grit Walther, 2022. "A General Branch-and-Cut Framework for Rotating Workforce Scheduling," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1548-1564, May.
    3. Young-Chae Hong & Amy Cohn & Stephen Gorga & Edmond O’Brien & William Pozehl & Jennifer Zank, 2019. "Using Optimization Techniques and Multidisciplinary Collaboration to Solve a Challenging Real-World Residency Scheduling Problem," Interfaces, INFORMS, vol. 49(3), pages 201-212, May.
    4. Smirnov, Dmitry & Huchzermeier, Arnd, 2020. "Analytics for labor planning in systems with load-dependent service times," European Journal of Operational Research, Elsevier, vol. 287(2), pages 668-681.
    5. Zhang, Zizhen & Qin, Hu & Wang, Kai & He, Huang & Liu, Tian, 2017. "Manpower allocation and vehicle routing problem in non-emergency ambulance transfer service," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 45-59.
    6. Paola Cappanera & Filippo Visintin & Roberta Rossi, 2022. "The emergency department physician rostering problem: obtaining equitable solutions via network optimization," Flexible Services and Manufacturing Journal, Springer, vol. 34(4), pages 916-959, December.
    7. Fang, Kan & Wang, Shijin & Pinedo, Michael L. & Chen, Lin & Chu, Feng, 2021. "A combinatorial Benders decomposition algorithm for parallel machine scheduling with working-time restrictions," European Journal of Operational Research, Elsevier, vol. 291(1), pages 128-146.
    8. Volland, Jonas & Fügener, Andreas & Brunner, Jens O., 2017. "A column generation approach for the integrated shift and task scheduling problem of logistics assistants in hospitals," European Journal of Operational Research, Elsevier, vol. 260(1), pages 316-334.
    9. Emir Hüseyin Özder & Evrencan Özcan & Tamer Eren, 2019. "Staff Task-Based Shift Scheduling Solution with an ANP and Goal Programming Method in a Natural Gas Combined Cycle Power Plant," Mathematics, MDPI, vol. 7(2), pages 1-26, February.
    10. Arjan Akkermans & Gerhard Post & Marc Uetz, 2021. "Solving the shift and break design problem using integer linear programming," Annals of Operations Research, Springer, vol. 302(2), pages 341-362, July.
    11. Broos Maenhout & Mario Vanhoucke, 2017. "A resource type analysis of the integrated project scheduling and personnel staffing problem," Annals of Operations Research, Springer, vol. 252(2), pages 407-433, May.
    12. Hans Corsten & Ferdinand Becker & Hagen Salewski, 2020. "Integrating truck and workforce scheduling in a cross-dock: analysis of different workforce coordination policies," Journal of Business Economics, Springer, vol. 90(2), pages 207-237, March.
    13. Mohammad Reza Hassani & J. Behnamian, 2021. "A scenario-based robust optimization with a pessimistic approach for nurse rostering problem," Journal of Combinatorial Optimization, Springer, vol. 41(1), pages 143-169, January.
    14. Andrew Lim & Zhenzhen Zhang & Hu Qin, 2017. "Pickup and Delivery Service with Manpower Planning in Hong Kong Public Hospitals," Transportation Science, INFORMS, vol. 51(2), pages 688-705, May.
    15. Mansini, Renata & Zanella, Marina & Zanotti, Roberto, 2023. "Optimizing a complex multi-objective personnel scheduling problem jointly complying with requests from customers and staff," Omega, Elsevier, vol. 114(C).
    16. Ferdinand Kiermaier & Markus Frey & Jonathan F. Bard, 2020. "The flexible break assignment problem for large tour scheduling problems with an application to airport ground handlers," Journal of Scheduling, Springer, vol. 23(2), pages 177-209, April.
    17. Ladier, Anne-Laure & Alpan, Gülgün & Penz, Bernard, 2014. "Joint employee weekly timetabling and daily rostering: A decision-support tool for a logistics platform," European Journal of Operational Research, Elsevier, vol. 234(1), pages 278-291.
    18. Annear, Luis Mauricio & Akhavan-Tabatabaei, Raha & Schmid, Verena, 2023. "Dynamic assignment of a multi-skilled workforce in job shops: An approximate dynamic programming approach," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1109-1125.
    19. da Cunha, Joaquim J. & de Souza, Mauricio C., 2018. "A linearized model for academic staff assignment in a Brazilian university focusing on performance gain in quality indicators," International Journal of Production Economics, Elsevier, vol. 197(C), pages 43-51.
    20. Mark W. Isken & Osman T. Aydas, 2022. "A tactical multi-week implicit tour scheduling model with applications in healthcare," Health Care Management Science, Springer, vol. 25(4), pages 551-573, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jsched:v:23:y:2020:i:5:d:10.1007_s10951-020-00659-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.