IDEAS home Printed from https://ideas.repec.org/a/spr/jsched/v21y2018i2d10.1007_s10951-017-0521-5.html
   My bibliography  Save this article

A list-scheduling heuristic for the short-term planning of assessment centers

Author

Listed:
  • Adrian Zimmermann

    (University of Bern)

  • Norbert Trautmann

    (University of Bern)

Abstract

Many companies operate assessment centers to help them select candidates for open job positions. During the assessment process, each candidate performs a set of tasks, and the candidates are evaluated by some so-called assessors. Additional constraints such as preparation and evaluation times, actors’ participation in tasks, no-go relationships, and prescribed time windows for lunch breaks contribute to the complexity of planning such assessment processes. We propose a multi-pass list-scheduling heuristic for this novel planning problem; to this end, we develop novel procedures for devising appropriate scheduling lists and for generating a feasible schedule. The computational results for a set of example problems that represent or are derived from real cases indicate that the heuristic generates optimal or near-optimal schedules within relatively short CPU times.

Suggested Citation

  • Adrian Zimmermann & Norbert Trautmann, 2018. "A list-scheduling heuristic for the short-term planning of assessment centers," Journal of Scheduling, Springer, vol. 21(2), pages 131-142, April.
  • Handle: RePEc:spr:jsched:v:21:y:2018:i:2:d:10.1007_s10951-017-0521-5
    DOI: 10.1007/s10951-017-0521-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10951-017-0521-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10951-017-0521-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. F. Brian Talbot, 1982. "Resource-Constrained Project Scheduling with Time-Resource Tradeoffs: The Nonpreemptive Case," Management Science, INFORMS, vol. 28(10), pages 1197-1210, October.
    2. Cavalcante, C.C.B. & Carvalho De Souza, C. & Savelsbergh, M.W.P. & Wang , Y., 2001. "Scheduling projects with labor constraints," LIDAM Reprints CORE 1520, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Drezet, L.-E. & Billaut, J.-C., 2008. "A project scheduling problem with labour constraints and time-dependent activities requirements," International Journal of Production Economics, Elsevier, vol. 112(1), pages 217-225, March.
    4. Salewski, Frank & Schirmer, Andreas & Drexl, Andreas, 1997. "Project scheduling under resource and mode identity constraints: Model, complexity, methods, and application," European Journal of Operational Research, Elsevier, vol. 102(1), pages 88-110, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hartmann, Sönke & Briskorn, Dirk, 2022. "An updated survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 297(1), pages 1-14.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Park, Jongyoon & Han, Jinil & Lee, Kyungsik, 2022. "Integer Optimization Model and Algorithm for the Stem Cell Culturing Problem," Omega, Elsevier, vol. 108(C).
    2. Xiong, Jian & Leus, Roel & Yang, Zhenyu & Abbass, Hussein A., 2016. "Evolutionary multi-objective resource allocation and scheduling in the Chinese navigation satellite system project," European Journal of Operational Research, Elsevier, vol. 251(2), pages 662-675.
    3. Ripon K. Chakrabortty & Ruhul A. Sarker & Daryl L. Essam, 2020. "Single mode resource constrained project scheduling with unreliable resources," Operational Research, Springer, vol. 20(3), pages 1369-1403, September.
    4. Hartmann, Sönke & Briskorn, Dirk, 2010. "A survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 207(1), pages 1-14, November.
    5. Brucker, Peter & Drexl, Andreas & Mohring, Rolf & Neumann, Klaus & Pesch, Erwin, 1999. "Resource-constrained project scheduling: Notation, classification, models, and methods," European Journal of Operational Research, Elsevier, vol. 112(1), pages 3-41, January.
    6. Hartmann, Sönke & Briskorn, Dirk, 2008. "A survey of variants and extensions of the resource-constrained project scheduling problem," Working Paper Series 02/2008, Hamburg School of Business Administration (HSBA).
    7. Hartmann, Sönke, 2011. "Project scheduling with resource capacities and requests varying with time," Working Paper Series 01/2011, Hamburg School of Business Administration (HSBA).
    8. Kellenbrink, Carolin & Helber, Stefan, 2015. "Scheduling resource-constrained projects with a flexible project structure," European Journal of Operational Research, Elsevier, vol. 246(2), pages 379-391.
    9. Weglarz, Jan & Józefowska, Joanna & Mika, Marek & Waligóra, Grzegorz, 2011. "Project scheduling with finite or infinite number of activity processing modes - A survey," European Journal of Operational Research, Elsevier, vol. 208(3), pages 177-205, February.
    10. Tiwari, Vikram & Patterson, James H. & Mabert, Vincent A., 2009. "Scheduling projects with heterogeneous resources to meet time and quality objectives," European Journal of Operational Research, Elsevier, vol. 193(3), pages 780-790, March.
    11. Karen Puttkammer & Rainer Kleber & Tobias Schulz & Karl Inderfurth, 2011. "Simultane Maschinenbelegungs- und Personaleinsatzplanung in KMUs anhand eines Fallbeispiels aus der Druckereibranche," FEMM Working Papers 110010, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    12. Nima Zoraghi & Aria Shahsavar & Babak Abbasi & Vincent Peteghem, 2017. "Multi-mode resource-constrained project scheduling problem with material ordering under bonus–penalty policies," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 49-79, April.
    13. Luis F. Machado-Domínguez & Carlos D. Paternina-Arboleda & Jorge I. Vélez & Agustin Barrios-Sarmiento, 2021. "A memetic algorithm to address the multi-node resource-constrained project scheduling problem," Journal of Scheduling, Springer, vol. 24(4), pages 413-429, August.
    14. Vo[ss], Stefan & Witt, Andreas, 2007. "Hybrid flow shop scheduling as a multi-mode multi-project scheduling problem with batching requirements: A real-world application," International Journal of Production Economics, Elsevier, vol. 105(2), pages 445-458, February.
    15. Schirmer, Andreas & Riesenberg, Sven, 1997. "Parameterized heuristics for project scheduling: Biased random sampling methods," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 456, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    16. Lin, B.M.T. & Liu, S.T., 2008. "Maximizing the reward in the relocation problem with generalized due dates," International Journal of Production Economics, Elsevier, vol. 115(1), pages 55-63, September.
    17. Wang, Xiong & Ferreira, Fernando A.F. & Chang, Ching-Ter, 2022. "Multi-objective competency-based approach to project scheduling and staff assignment: Case study of an internal audit project," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
    18. Chen, Shih-Pin & Tsai, Ming-Jiun, 2011. "Time-cost trade-off analysis of project networks in fuzzy environments," European Journal of Operational Research, Elsevier, vol. 212(2), pages 386-397, July.
    19. Dayal Madhukar & Verma, Sanjay, 2014. "Breadth-first and Best-first Exact Procedures for Regular Measures of the Multi-mode RCPSP," IIMA Working Papers WP2014-10-04, Indian Institute of Management Ahmedabad, Research and Publication Department.
    20. Mori, Masao & Tseng, Ching Chih, 1997. "A genetic algorithm for multi-mode resource constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 100(1), pages 134-141, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jsched:v:21:y:2018:i:2:d:10.1007_s10951-017-0521-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.