IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v37y2024i3d10.1007_s10959-023-01298-x.html
   My bibliography  Save this article

A Robust $$\alpha $$ α -Stable Central Limit Theorem Under Sublinear Expectation without Integrability Condition

Author

Listed:
  • Lianzi Jiang

    (Shandong University of Science and Technology)

  • Gechun Liang

    (The University of Warwick)

Abstract

This article fills a gap in the literature by relaxing the integrability condition for the robust $$\alpha $$ α -stable central limit theorem under sublinear expectation. Specifically, for $$\alpha \in (0,1]$$ α ∈ ( 0 , 1 ] , we prove that the normalized sums of i.i.d. non-integrable random variables $$\big \{n^{-\frac{1}{\alpha }}\sum _{i=1}^{n}Z_{i}\big \}_{n=1}^{\infty }$$ { n - 1 α ∑ i = 1 n Z i } n = 1 ∞ converge in law to $${\tilde{\zeta }}_{1}$$ ζ ~ 1 , where $$({\tilde{\zeta }}_{t})_{t\in [0,1]}$$ ( ζ ~ t ) t ∈ [ 0 , 1 ] is a multidimensional nonlinear symmetric $$\alpha $$ α -stable process with jump uncertainty set $${\mathcal {L}}$$ L . The limiting $$\alpha $$ α -stable process is further characterized by a fully nonlinear partial integro-differential equation (PIDE): $$\begin{aligned} \left\{ \begin{array}{l} \displaystyle \partial _{t}u(t,x)-\sup \limits _{F_{\mu }\in {\mathcal {L}}}\left\{ \int _{{\mathbb {R}}^{d}}\delta _{\lambda }^{\alpha }u(t,x)F_{\mu }(d\lambda )\right\} =0,\\ \displaystyle u(0,x)=\phi (x),\quad \forall (t,x)\in [0,1]\times {\mathbb {R}}^{d}, \end{array} \right. \end{aligned}$$ ∂ t u ( t , x ) - sup F μ ∈ L ∫ R d δ λ α u ( t , x ) F μ ( d λ ) = 0 , u ( 0 , x ) = ϕ ( x ) , ∀ ( t , x ) ∈ [ 0 , 1 ] × R d , where $$\begin{aligned} \delta _{\lambda }^{\alpha }u(t,x):=\left\{ \begin{array}{ll} u(t,x+\lambda )-u(t,x)-\langle D_{x}u(t,x),\lambda \mathbbm {1}_{\{|\lambda |\le 1\}}\rangle , &{}\quad \alpha =1,\\ u(t,x+\lambda )-u(t,x), &{}\quad \alpha \in (0,1). \end{array} \right. \end{aligned}$$ δ λ α u ( t , x ) : = u ( t , x + λ ) - u ( t , x ) - ⟨ D x u ( t , x ) , λ 1 { | λ | ≤ 1 } ⟩ , α = 1 , u ( t , x + λ ) - u ( t , x ) , α ∈ ( 0 , 1 ) . The approach used in this study involves the utilization of several tools, including a weak convergence approach to obtain the limiting process, a Lévy–Khintchine representation of the nonlinear $$\alpha $$ α -stable process and a truncation technique to estimate the corresponding $$\alpha $$ α -stable Lévy measures. In addition, the article presents a probabilistic method for proving the existence of a solution to the above fully nonlinear PIDE.

Suggested Citation

  • Lianzi Jiang & Gechun Liang, 2024. "A Robust $$\alpha $$ α -Stable Central Limit Theorem Under Sublinear Expectation without Integrability Condition," Journal of Theoretical Probability, Springer, vol. 37(3), pages 2394-2424, September.
  • Handle: RePEc:spr:jotpro:v:37:y:2024:i:3:d:10.1007_s10959-023-01298-x
    DOI: 10.1007/s10959-023-01298-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-023-01298-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-023-01298-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Erhan Bayraktar & Alexander Munk, 2014. "An $\alpha$-stable limit theorem under sublinear expectation," Papers 1409.7960, arXiv.org, revised Jun 2016.
    2. Denk, Robert & Kupper, Michael & Nendel, Max, 2020. "A semigroup approach to nonlinear Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1616-1642.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Criens, David & Niemann, Lars, 2024. "A class of multidimensional nonlinear diffusions with the Feller property," Statistics & Probability Letters, Elsevier, vol. 208(C).
    2. Max Nendel, 2021. "Markov chains under nonlinear expectation," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 474-507, January.
    3. Fuhrmann, Sven & Kupper, Michael & Nendel, Max, 2021. "Wasserstein Perturbations of Markovian Transition Semigroups," Center for Mathematical Economics Working Papers 649, Center for Mathematical Economics, Bielefeld University.
    4. Criens, David & Niemann, Lars, 2024. "Markov selections and Feller properties of nonlinear diffusions," Stochastic Processes and their Applications, Elsevier, vol. 173(C).
    5. Changhong Guo & Shaomei Fang & Yong He, 2023. "A Generalized Stochastic Process: Fractional G-Brownian Motion," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-34, March.
    6. Daniel Bartl & Stephan Eckstein & Michael Kupper, 2020. "Limits of random walks with distributionally robust transition probabilities," Papers 2007.08815, arXiv.org, revised Apr 2021.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:37:y:2024:i:3:d:10.1007_s10959-023-01298-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.