IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v35y2022i1d10.1007_s10959-020-01071-4.html
   My bibliography  Save this article

Empirical Measure and Small Noise Asymptotics Under Large Deviation Scaling for Interacting Diffusions

Author

Listed:
  • Amarjit Budhiraja

    (University of North Carolina)

  • Michael Conroy

    (University of North Carolina)

Abstract

Consider a collection of particles whose state evolution is described through a system of interacting diffusions in which each particle is driven by an independent individual source of noise and also by a small amount of noise that is common to all particles. The interaction between the particles is due to the common noise and also through the drift and diffusion coefficients that depend on the state empirical measure. We study large deviation behavior of the empirical measure process which is governed by two types of scaling, one corresponding to mean field asymptotics and the other to the Freidlin–Wentzell small noise asymptotics. Different levels of intensity of the small common noise lead to different types of large deviation behavior, and we provide a precise characterization of the various regimes. The rate functions can be interpreted as the value functions of certain stochastic control problems in which there are two types of controls; one of the controls is random and nonanticipative and arises from the aggregated contributions of the individual Brownian noises, whereas the second control is nonrandom and corresponds to the small common Brownian noise that impacts all particles. We also study large deviation behavior of interacting particle systems approximating various types of Feynman–Kac functionals. Proofs are based on stochastic control representations for exponential functionals of Brownian motions and on uniqueness results for weak solutions of stochastic differential equations associated with controlled nonlinear Markov processes

Suggested Citation

  • Amarjit Budhiraja & Michael Conroy, 2022. "Empirical Measure and Small Noise Asymptotics Under Large Deviation Scaling for Interacting Diffusions," Journal of Theoretical Probability, Springer, vol. 35(1), pages 295-349, March.
  • Handle: RePEc:spr:jotpro:v:35:y:2022:i:1:d:10.1007_s10959-020-01071-4
    DOI: 10.1007/s10959-020-01071-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-020-01071-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-020-01071-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kurtz, Thomas G. & Xiong, Jie, 1999. "Particle representations for a class of nonlinear SPDEs," Stochastic Processes and their Applications, Elsevier, vol. 83(1), pages 103-126, September.
    2. Dupuis, Paul & Spiliopoulos, Konstantinos, 2012. "Large deviations for multiscale diffusion via weak convergence methods," Stochastic Processes and their Applications, Elsevier, vol. 122(4), pages 1947-1987.
    3. Kay Giesecke & Konstantinos Spiliopoulos & Richard B. Sowers, 2011. "Default clustering in large portfolios: Typical events," Papers 1104.1773, arXiv.org, revised Feb 2013.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bezemek, Z.W. & Spiliopoulos, K., 2023. "Large deviations for interacting multiscale particle systems," Stochastic Processes and their Applications, Elsevier, vol. 155(C), pages 27-108.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Josselin Garnier & George Papanicolaou & Tzu-Wei Yang, 2015. "A risk analysis for a system stabilized by a central agent," Papers 1507.08333, arXiv.org, revised Aug 2015.
    2. Ahmad, F. & Hambly, B.M. & Ledger, S., 2018. "A stochastic partial differential equation model for the pricing of mortgage-backed securities," Stochastic Processes and their Applications, Elsevier, vol. 128(11), pages 3778-3806.
    3. Christa Cuchiero & Martin Larsson & Sara Svaluto-Ferro, 2018. "Probability measure-valued polynomial diffusions," Papers 1807.03229, arXiv.org.
    4. Maroulas, Vasileios & Pan, Xiaoyang & Xiong, Jie, 2020. "Large deviations for the optimal filter of nonlinear dynamical systems driven by Lévy noise," Stochastic Processes and their Applications, Elsevier, vol. 130(1), pages 203-231.
    5. Agostino Capponi & Xu Sun & David D. Yao, 2020. "A Dynamic Network Model of Interbank Lending—Systemic Risk and Liquidity Provisioning," Mathematics of Operations Research, INFORMS, vol. 45(3), pages 1127-1152, August.
    6. Lijun Bo & Tongqing Li & Xiang Yu, 2021. "Centralized systemic risk control in the interbank system: Weak formulation and Gamma-convergence," Papers 2106.09978, arXiv.org, revised May 2022.
    7. Antoine Jacquier & Konstantinos Spiliopoulos, 2018. "Pathwise moderate deviations for option pricing," Papers 1803.04483, arXiv.org, revised Dec 2018.
    8. Jean-David Fermanian, 2020. "On the Dependence between Default Risk and Recovery Rates in Structural Models," Annals of Economics and Statistics, GENES, issue 140, pages 45-82.
    9. Egami, M. & Kevkhishvili, R., 2017. "An analysis of simultaneous company defaults using a shot noise process," Journal of Banking & Finance, Elsevier, vol. 80(C), pages 135-161.
    10. Bezemek, Z.W. & Spiliopoulos, K., 2023. "Large deviations for interacting multiscale particle systems," Stochastic Processes and their Applications, Elsevier, vol. 155(C), pages 27-108.
    11. Konstantinos Spiliopoulos & Jia Yang, 2018. "Network effects in default clustering for large systems," Papers 1812.07645, arXiv.org, revised Feb 2020.
    12. Burzoni, Matteo & Campi, Luciano, 2023. "Mean field games with absorption and common noise with a model of bank run," Stochastic Processes and their Applications, Elsevier, vol. 164(C), pages 206-241.
    13. Ben Hambly & Nikolaos Kolliopoulos, 2020. "Fast mean-reversion asymptotics for large portfolios of stochastic volatility models," Finance and Stochastics, Springer, vol. 24(3), pages 757-794, July.
    14. Nguyen, Son L. & Yin, George & Hoang, Tuan A., 2020. "On laws of large numbers for systems with mean-field interactions and Markovian switching," Stochastic Processes and their Applications, Elsevier, vol. 130(1), pages 262-296.
    15. Frikha, Noufel & Li, Libo, 2021. "Well-posedness and approximation of some one-dimensional Lévy-driven non-linear SDEs," Stochastic Processes and their Applications, Elsevier, vol. 132(C), pages 76-107.
    16. Clini, Andrea, 2023. "Porous media equations with nonlinear gradient noise and Dirichlet boundary conditions," Stochastic Processes and their Applications, Elsevier, vol. 159(C), pages 428-498.
    17. Ben Hambly & Andreas Sojmark, 2018. "An SPDE Model for Systemic Risk with Endogenous Contagion," Papers 1801.10088, arXiv.org, revised Sep 2018.
    18. Fei Fang & Yiwei Sun & Konstantinos Spiliopoulos, 2016. "The effect of heterogeneity on flocking behavior and systemic risk," Papers 1607.08287, arXiv.org, revised Jun 2017.
    19. Delarue, F. & Inglis, J. & Rubenthaler, S. & Tanré, E., 2015. "Particle systems with a singular mean-field self-excitation. Application to neuronal networks," Stochastic Processes and their Applications, Elsevier, vol. 125(6), pages 2451-2492.
    20. Anastasia Borovykh & Andrea Pascucci & Stefano La Rovere, 2018. "Systemic risk in a mean-field model of interbank lending with self-exciting shocks," IISE Transactions, Taylor & Francis Journals, vol. 50(9), pages 806-819, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:35:y:2022:i:1:d:10.1007_s10959-020-01071-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.