IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v122y2012i4p1947-1987.html
   My bibliography  Save this article

Large deviations for multiscale diffusion via weak convergence methods

Author

Listed:
  • Dupuis, Paul
  • Spiliopoulos, Konstantinos

Abstract

We study the large deviations principle for locally periodic SDEs with small noise and fast oscillating coefficients. There are three regimes depending on how fast the intensity of the noise goes to zero relative to homogenization parameter. We use weak convergence methods which provide convenient representations for the action functional for all regimes. Along the way, we study weak limits of controlled SDEs with fast oscillating coefficients. We derive, in some cases, a control that nearly achieves the large deviations lower bound at prelimit level. This control is useful for designing efficient importance sampling schemes for multiscale small noise diffusion.

Suggested Citation

  • Dupuis, Paul & Spiliopoulos, Konstantinos, 2012. "Large deviations for multiscale diffusion via weak convergence methods," Stochastic Processes and their Applications, Elsevier, vol. 122(4), pages 1947-1987.
  • Handle: RePEc:eee:spapps:v:122:y:2012:i:4:p:1947-1987
    DOI: 10.1016/j.spa.2011.12.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414911003140
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2011.12.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Freidlin, Mark I. & Sowers, Richard B., 1999. "A comparison of homogenization and large deviations, with applications to wavefront propagation," Stochastic Processes and their Applications, Elsevier, vol. 82(1), pages 23-52, July.
    2. Veretennikov, A. Yu., 2000. "On large deviations for SDEs with small diffusion and averaging," Stochastic Processes and their Applications, Elsevier, vol. 89(1), pages 69-79, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kumar, Rohini & Popovic, Lea, 2017. "Large deviations for multi-scale jump-diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 127(4), pages 1297-1320.
    2. Amarjit Budhiraja & Michael Conroy, 2022. "Empirical Measure and Small Noise Asymptotics Under Large Deviation Scaling for Interacting Diffusions," Journal of Theoretical Probability, Springer, vol. 35(1), pages 295-349, March.
    3. Bezemek, Z.W. & Spiliopoulos, K., 2023. "Large deviations for interacting multiscale particle systems," Stochastic Processes and their Applications, Elsevier, vol. 155(C), pages 27-108.
    4. Antoine Jacquier & Alexandre Pannier, 2020. "Large and moderate deviations for stochastic Volterra systems," Papers 2004.10571, arXiv.org, revised Apr 2022.
    5. Antoine Jacquier & Konstantinos Spiliopoulos, 2018. "Pathwise moderate deviations for option pricing," Papers 1803.04483, arXiv.org, revised Dec 2018.
    6. Jacquier, Antoine & Pannier, Alexandre, 2022. "Large and moderate deviations for stochastic Volterra systems," Stochastic Processes and their Applications, Elsevier, vol. 149(C), pages 142-187.
    7. Solesne Bourguin & Thanh Dang & Konstantinos Spiliopoulos, 2023. "Moderate Deviation Principle for Multiscale Systems Driven by Fractional Brownian Motion," Journal of Theoretical Probability, Springer, vol. 36(1), pages 1-57, March.
    8. Konstantinos Spiliopoulos & Alexandra Chronopoulou, 2013. "Maximum likelihood estimation for small noise multiscale diffusions," Statistical Inference for Stochastic Processes, Springer, vol. 16(3), pages 237-266, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bezemek, Z.W. & Spiliopoulos, K., 2023. "Large deviations for interacting multiscale particle systems," Stochastic Processes and their Applications, Elsevier, vol. 155(C), pages 27-108.
    2. Kumar, Rohini & Popovic, Lea, 2017. "Large deviations for multi-scale jump-diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 127(4), pages 1297-1320.
    3. Konstantinos Spiliopoulos & Alexandra Chronopoulou, 2013. "Maximum likelihood estimation for small noise multiscale diffusions," Statistical Inference for Stochastic Processes, Springer, vol. 16(3), pages 237-266, October.
    4. Veretennikov, A. Yu., 2000. "On large deviations for SDEs with small diffusion and averaging," Stochastic Processes and their Applications, Elsevier, vol. 89(1), pages 69-79, September.
    5. Cl´ement Manga & Alioune Coulibaly & Alassane Diedhiou, 2019. "On Jumps Stochastic Evolution Equations With Application of Homogenization and Large Deviations," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 11(2), pages 125-134, April.
    6. Solesne Bourguin & Thanh Dang & Konstantinos Spiliopoulos, 2023. "Moderate Deviation Principle for Multiscale Systems Driven by Fractional Brownian Motion," Journal of Theoretical Probability, Springer, vol. 36(1), pages 1-57, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:122:y:2012:i:4:p:1947-1987. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.