IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v33y2020i3d10.1007_s10959-019-00929-6.html
   My bibliography  Save this article

Constructive Regularization of the Random Matrix Norm

Author

Listed:
  • Elizaveta Rebrova

    (UCLA)

Abstract

We study the structure of $$n \times n$$ n × n random matrices with centered i.i.d. entries having only two finite moments. In the recent joint work with R. Vershynin, we have shown that the operator norm of such matrix A can be reduced to the optimal order $$O(\sqrt{n})$$ O ( n ) with high probability by zeroing out a small submatrix of A, but did not describe the structure of this “bad” submatrix nor provide a constructive way to find it. In the current paper, we give a very simple description of a small “bad” subset of entries. We show that it is enough to zero out a small fraction of the rows and columns of A with largest $$L_2$$ L 2 norms to bring the operator norm of A to the almost optimal order $$O(\sqrt{n \log \log n})$$ O ( n log log n ) , under additional assumption that the matrix entries are symmetrically distributed. As a corollary, we also obtain a constructive procedure to find a small submatrix of A that one can zero out to achieve the same norm regularization. The main component of the proof is the development of techniques extending constructive regularization approaches known for the Bernoulli matrices (from the works of Feige and Ofek, and Le, Levina and Vershynin) to the considerably broader class of heavy-tailed random matrices.

Suggested Citation

  • Elizaveta Rebrova, 2020. "Constructive Regularization of the Random Matrix Norm," Journal of Theoretical Probability, Springer, vol. 33(3), pages 1768-1790, September.
  • Handle: RePEc:spr:jotpro:v:33:y:2020:i:3:d:10.1007_s10959-019-00929-6
    DOI: 10.1007/s10959-019-00929-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-019-00929-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-019-00929-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Auffinger, Antonio & Tang, Si, 2016. "Extreme eigenvalues of sparse, heavy tailed random matrices," Stochastic Processes and their Applications, Elsevier, vol. 126(11), pages 3310-3330.
    2. Silverstein, Jack W., 1989. "On the weak limit of the largest eigenvalue of a large dimensional sample covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 30(2), pages 307-311, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hyungsik Roger Moon & Martin Weidner, 2015. "Linear Regression for Panel With Unknown Number of Factors as Interactive Fixed Effects," Econometrica, Econometric Society, vol. 83(4), pages 1543-1579, July.
    2. Bai, Zhidong & Silverstein, Jack W., 2022. "A tribute to P.R. Krishnaiah," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    3. Hyungsik Roger Roger Moon & Martin Weidner, 2014. "Linear regression for panel with unknown number of factors as interactive fixed effects," CeMMAP working papers 35/14, Institute for Fiscal Studies.
    4. Ningning Xia & Zhidong Bai, 2015. "Functional CLT of eigenvectors for large sample covariance matrices," Statistical Papers, Springer, vol. 56(1), pages 23-60, February.
    5. Hyungsik Roger Roger Moon & Martin Weidner, 2013. "Linear regression for panel with unknown number of factors as interactive fixed effects," CeMMAP working papers 49/13, Institute for Fiscal Studies.
    6. Hugo Freeman & Martin Weidner, 2021. "Low-rank approximations of nonseparable panel models," The Econometrics Journal, Royal Economic Society, vol. 24(2), pages 40-77.
    7. Moon, Hyungsik Roger & Weidner, Martin, 2017. "Dynamic Linear Panel Regression Models With Interactive Fixed Effects," Econometric Theory, Cambridge University Press, vol. 33(1), pages 158-195, February.
    8. Hyungsik Roger Roger Moon & Martin Weidner, 2013. "Dynamic linear panel regression models with interactive fixed effects," CeMMAP working papers 63/13, Institute for Fiscal Studies.
    9. Li, Yuling & Zhou, Huanchao & Hu, Jiang, 2023. "The eigenvector LSD of information plus noise matrices and its application to linear regression model," Statistics & Probability Letters, Elsevier, vol. 197(C).
    10. Hyungsik Roger Roger Moon & Martin Weidner, 2014. "Dynamic linear panel regression models with interactive fixed effects," CeMMAP working papers 47/14, Institute for Fiscal Studies.
    11. Xu, Yangchang & Xia, Ningning, 2023. "On the eigenvectors of large-dimensional sample spatial sign covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    12. Joel Bun & Jean-Philippe Bouchaud & Marc Potters, 2016. "Cleaning large correlation matrices: tools from random matrix theory," Papers 1610.08104, arXiv.org.
    13. Iv'an Fern'andez-Val & Hugo Freeman & Martin Weidner, 2020. "Low-Rank Approximations of Nonseparable Panel Models," Papers 2010.12439, arXiv.org, revised Mar 2021.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:33:y:2020:i:3:d:10.1007_s10959-019-00929-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.