IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v31y2018i3d10.1007_s10959-017-0745-5.html
   My bibliography  Save this article

Bounds on Lifting Continuous-State Markov Chains to Speed Up Mixing

Author

Listed:
  • Kavita Ramanan

    (Brown University)

  • Aaron Smith

    (University of Ottawa)

Abstract

It is often possible to speed up the mixing of a Markov chain $$\{ X_{t} \}_{t \in \mathbb {N}}$$ { X t } t ∈ N on a state space $$\Omega $$ Ω by lifting, that is, running a more efficient Markov chain $$\{ \widehat{X}_{t} \}_{t \in \mathbb {N}}$$ { X ^ t } t ∈ N on a larger state space $$\hat{\Omega } \supset \Omega $$ Ω ^ ⊃ Ω that projects to $$\{ X_{t} \}_{t \in \mathbb {N}}$$ { X t } t ∈ N in a certain sense. Chen et al. (Proceedings of the 31st annual ACM symposium on theory of computing. ACM, 1999) prove that for Markov chains on finite state spaces, the mixing time of any lift of a Markov chain is at least the square root of the mixing time of the original chain, up to a factor that depends on the stationary measure of $$\{X_t\}_{t \in \mathbb {N}}$$ { X t } t ∈ N . Unfortunately, this extra factor makes the bound in Chen et al. (1999) very loose for Markov chains on large state spaces and useless for Markov chains on continuous state spaces. In this paper, we develop an extension of the evolving set method that allows us to refine this extra factor and find bounds for Markov chains on continuous state spaces that are analogous to the bounds in Chen et al. (1999). These bounds also allow us to improve on the bounds in Chen et al. (1999) for some chains on finite state spaces.

Suggested Citation

  • Kavita Ramanan & Aaron Smith, 2018. "Bounds on Lifting Continuous-State Markov Chains to Speed Up Mixing," Journal of Theoretical Probability, Springer, vol. 31(3), pages 1647-1678, September.
  • Handle: RePEc:spr:jotpro:v:31:y:2018:i:3:d:10.1007_s10959-017-0745-5
    DOI: 10.1007/s10959-017-0745-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-017-0745-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-017-0745-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yuval Peres & Perla Sousi, 2015. "Mixing Times are Hitting Times of Large Sets," Journal of Theoretical Probability, Springer, vol. 28(2), pages 488-519, June.
    2. Alison L. Gibbs & Francis Edward Su, 2002. "On Choosing and Bounding Probability Metrics," International Statistical Review, International Statistical Institute, vol. 70(3), pages 419-435, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fenner, Trevor & Levene, Mark & Loizou, George, 2010. "Predicting the long tail of book sales: Unearthing the power-law exponent," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(12), pages 2416-2421.
    2. Gerhold, Stefan & Gülüm, I. Cetin, 2019. "Peacocks nearby: Approximating sequences of measures," Stochastic Processes and their Applications, Elsevier, vol. 129(7), pages 2406-2436.
    3. Xuejun Zhao & Ruihao Zhu & William B. Haskell, 2022. "Learning to Price Supply Chain Contracts against a Learning Retailer," Papers 2211.04586, arXiv.org.
    4. Gurdip Bakshi & Xiaohui Gao & George Panayotov, 2021. "A Theory of Dissimilarity Between Stochastic Discount Factors," Management Science, INFORMS, vol. 67(7), pages 4602-4622, July.
    5. Puppo, L. & Pedroni, N. & Maio, F. Di & Bersano, A. & Bertani, C. & Zio, E., 2021. "A Framework based on Finite Mixture Models and Adaptive Kriging for Characterizing Non-Smooth and Multimodal Failure Regions in a Nuclear Passive Safety System," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    6. Marie Ernst & Yvik Swan, 2022. "Distances Between Distributions Via Stein’s Method," Journal of Theoretical Probability, Springer, vol. 35(2), pages 949-987, June.
    7. Crimaldi, Irene & Dai Pra, Paolo & Louis, Pierre-Yves & Minelli, Ida G., 2019. "Synchronization and functional central limit theorems for interacting reinforced random walks," Stochastic Processes and their Applications, Elsevier, vol. 129(1), pages 70-101.
    8. Pesenti, Silvana M. & Millossovich, Pietro & Tsanakas, Andreas, 2019. "Reverse sensitivity testing: What does it take to break the model?," European Journal of Operational Research, Elsevier, vol. 274(2), pages 654-670.
    9. Moritz Nobis & Carlo Schmitt & Ralf Schemm & Armin Schnettler, 2020. "Pan-European CVaR-Constrained Stochastic Unit Commitment in Day-Ahead and Intraday Electricity Markets," Energies, MDPI, vol. 13(9), pages 1-35, May.
    10. El Mehdi Haress & Alexandre Richard, 2024. "Estimation of several parameters in discretely-observed stochastic differential equations with additive fractional noise," Statistical Inference for Stochastic Processes, Springer, vol. 27(3), pages 641-691, October.
    11. Matheus Henrique Junqueira Saldanha & Adriano Kamimura Suzuki, 2023. "On dealing with the unknown population minimum in parametric inference," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(3), pages 509-535, September.
    12. Leandro Nascimento, 2022. "Bounded arbitrage and nearly rational behavior," Papers 2212.02680, arXiv.org, revised Jul 2023.
    13. Giacomo Aletti & Caterina May & Piercesare Secchi, 2012. "A Functional Equation Whose Unknown is $\mathcal{P}([0,1])$ Valued," Journal of Theoretical Probability, Springer, vol. 25(4), pages 1207-1232, December.
    14. Patrick Marsh, 2019. "The role of information in nonstationary regression," Discussion Papers 19/04, University of Nottingham, Granger Centre for Time Series Econometrics.
    15. Barrera, Javiera & Lachaud, Béatrice & Ycart, Bernard, 2006. "Cut-off for n-tuples of exponentially converging processes," Stochastic Processes and their Applications, Elsevier, vol. 116(10), pages 1433-1446, October.
    16. White, Staci A. & Herbei, Radu, 2015. "A Monte Carlo approach to quantifying model error in Bayesian parameter estimation," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 168-181.
    17. Laura Azzimonti & Francesca Ieva & Anna Maria Paganoni, 2013. "Nonlinear nonparametric mixed-effects models for unsupervised classification," Computational Statistics, Springer, vol. 28(4), pages 1549-1570, August.
    18. Postek, K.S. & den Hertog, D. & Melenberg, B., 2015. "Computationally Tractable Counterparts of Distributionally Robust Constraints on Risk Measures (revision of CentER DP 2014-031)," Discussion Paper 2015-047, Tilburg University, Center for Economic Research.
    19. Fabian Krüger & Sebastian Lerch & Thordis Thorarinsdottir & Tilmann Gneiting, 2021. "Predictive Inference Based on Markov Chain Monte Carlo Output," International Statistical Review, International Statistical Institute, vol. 89(2), pages 274-301, August.
    20. Hoang, Lê Nguyên & Soumis, François & Zaccour, Georges, 2019. "The return function: A new computable perspective on Bayesian–Nash equilibria," European Journal of Operational Research, Elsevier, vol. 279(2), pages 471-485.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:31:y:2018:i:3:d:10.1007_s10959-017-0745-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.