IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v30y2017i4d10.1007_s10959-016-0686-4.html
   My bibliography  Save this article

Complex Outliers of Hermitian Random Matrices

Author

Listed:
  • Jean Rochet

    (MAP5, Université Paris Descartes)

Abstract

In this paper, we study the asymptotic behavior of the outliers of the sum a Hermitian random matrix and a finite rank matrix which is not necessarily Hermitian. We observe several possible convergence rates and outliers locating around their limits at the vertices of regular polygons as in Benaych-Georges and Rochet (Probab Theory Relat Fields, 2015), as well as possible correlations between outliers at macroscopic distance as in Knowles and Yin (Ann Probab 42(5):1980–2031, 2014) and Benaych-Georges and Rochet (2015). We also observe that a single spike can generate several outliers in the spectrum of the deformed model, as already noticed in Benaych-Georges and Nadakuditi (Adv Math 227(1):494–521, 2011) and Belinschi et al. (Outliers in the spectrum of large deformed unitarily invariant models 2012, arXiv:1207.5443v1 ). In the particular case where the perturbation matrix is Hermitian, our results complete the work of Benaych-Georges et al. (Electron J Probab 16(60):1621–1662, 2011), as we consider fluctuations of outliers lying in “holes” of the limit support, which happen to exhibit surprising correlations.

Suggested Citation

  • Jean Rochet, 2017. "Complex Outliers of Hermitian Random Matrices," Journal of Theoretical Probability, Springer, vol. 30(4), pages 1624-1654, December.
  • Handle: RePEc:spr:jotpro:v:30:y:2017:i:4:d:10.1007_s10959-016-0686-4
    DOI: 10.1007/s10959-016-0686-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-016-0686-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-016-0686-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benaych-Georges, Florent & Nadakuditi, Raj Rao, 2012. "The singular values and vectors of low rank perturbations of large rectangular random matrices," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 120-135.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patryk Pagacz & Michał Wojtylak, 2022. "Random Perturbations of Matrix Polynomials," Journal of Theoretical Probability, Springer, vol. 35(1), pages 52-88, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leeb, William, 2022. "Optimal singular value shrinkage for operator norm loss: Extending to non-square matrices," Statistics & Probability Letters, Elsevier, vol. 186(C).
    2. Barigozzi, Matteo & Trapani, Lorenzo, 2020. "Sequential testing for structural stability in approximate factor models," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 5149-5187.
    3. Couillet, Romain, 2015. "Robust spiked random matrices and a robust G-MUSIC estimator," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 139-161.
    4. Kamil Jurczak, 2015. "A Universal Expectation Bound on Empirical Projections of Deformed Random Matrices," Journal of Theoretical Probability, Springer, vol. 28(2), pages 650-666, June.
    5. Ding, Xiucai & Ji, Hong Chang, 2023. "Spiked multiplicative random matrices and principal components," Stochastic Processes and their Applications, Elsevier, vol. 163(C), pages 25-60.
    6. Lin, Wei & Li, Min & Zhou, Shuming & Liu, Jiafei & Chen, Gaolin & Zhou, Qianru, 2021. "Phase transition in spectral clustering based on resistance matrix," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    7. Feldman, Michael J., 2023. "Spiked singular values and vectors under extreme aspect ratios," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
    8. Anna Bykhovskaya & Vadim Gorin, 2023. "High-Dimensional Canonical Correlation Analysis," Papers 2306.16393, arXiv.org, revised Aug 2023.
    9. Monika Bhattacharjee & Arup Bose, 2017. "Matrix polynomial generalizations of the sample variance-covariance matrix when pn−1 → y ∈ (0, ∞)," Indian Journal of Pure and Applied Mathematics, Springer, vol. 48(4), pages 575-607, December.
    10. Hong, David & Balzano, Laura & Fessler, Jeffrey A., 2018. "Asymptotic performance of PCA for high-dimensional heteroscedastic data," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 435-452.
    11. Ding, Xiucai & Yang, Fan, 2022. "Edge statistics of large dimensional deformed rectangular matrices," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    12. Joel Bun & Jean-Philippe Bouchaud & Marc Potters, 2016. "Cleaning large correlation matrices: tools from random matrix theory," Papers 1610.08104, arXiv.org.
    13. Philippe Loubaton, 2016. "On the Almost Sure Location of the Singular Values of Certain Gaussian Block-Hankel Large Random Matrices," Journal of Theoretical Probability, Springer, vol. 29(4), pages 1339-1443, December.
    14. Xinyi Zhong & Chang Su & Zhou Fan, 2022. "Empirical Bayes PCA in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 853-878, July.
    15. Kargin, Vladislav, 2015. "On estimation in the reduced-rank regression with a large number of responses and predictors," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 377-394.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:30:y:2017:i:4:d:10.1007_s10959-016-0686-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.