IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v27y2014i2d10.1007_s10959-012-0431-6.html
   My bibliography  Save this article

On Range and Local Time of Many-dimensional Submartingales

Author

Listed:
  • Mikhail Menshikov

    (University of Durham)

  • Serguei Popov

    (University of Campinas—UNICAMP)

Abstract

We consider a discrete-time process adapted to some filtration which lives on a (typically countable) subset of ℝ d , d≥2. For this process, we assume that it has uniformly bounded jumps, and is uniformly elliptic (can advance by at least some fixed amount with respect to any direction, with uniformly positive probability). Also, we assume that the projection of this process on some fixed vector is a submartingale, and that a stronger additional condition on the direction of the drift holds (this condition does not exclude that the drift could be equal to 0 or be arbitrarily small). The main result is that with very high probability the number of visits to any fixed site by time n is less than $n^{\frac{1}{2}-\delta}$ for some δ>0. This in its turn implies that the number of different sites visited by the process by time n should be at least $n^{\frac{1}{2}+\delta}$ .

Suggested Citation

  • Mikhail Menshikov & Serguei Popov, 2014. "On Range and Local Time of Many-dimensional Submartingales," Journal of Theoretical Probability, Springer, vol. 27(2), pages 601-617, June.
  • Handle: RePEc:spr:jotpro:v:27:y:2014:i:2:d:10.1007_s10959-012-0431-6
    DOI: 10.1007/s10959-012-0431-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-012-0431-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-012-0431-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hamana, Yuji, 1998. "An almost sure invariance principle for the range of random walks," Stochastic Processes and their Applications, Elsevier, vol. 78(2), pages 131-143, November.
    2. Marcus, Michael B. & Rosen, Jay, 1995. "Logarithmic averages for the local times of recurrent random walks and Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 59(2), pages 175-184, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Berkes, István, 2001. "The law of large numbers with exceptional sets," Statistics & Probability Letters, Elsevier, vol. 55(4), pages 431-438, December.
    2. Kazuki Okamura, 2021. "Some Results for Range of Random Walk on Graph with Spectral Dimension Two," Journal of Theoretical Probability, Springer, vol. 34(3), pages 1653-1688, September.
    3. Fitzsimmons, P. J. & Pitman, Jim, 1999. "Kac's moment formula and the Feynman-Kac formula for additive functionals of a Markov process," Stochastic Processes and their Applications, Elsevier, vol. 79(1), pages 117-134, January.
    4. Csáki, Endre & Földes, Antónia, 1997. "On the logarithmic average of iterated processes," Statistics & Probability Letters, Elsevier, vol. 33(4), pages 347-358, May.
    5. Xia Chen, 2006. "Moderate and Small Deviations for the Ranges of One-Dimensional Random Walks," Journal of Theoretical Probability, Springer, vol. 19(3), pages 721-739, December.
    6. Cygan, Wojciech & Sandrić, Nikola & Šebek, Stjepan, 2023. "Invariance principle for the capacity and the cardinality of the range of stable random walks," Stochastic Processes and their Applications, Elsevier, vol. 163(C), pages 61-84.
    7. Yuji Hamana, 2001. "Asymptotics of the Moment Generating Function for the Range of Random Walks," Journal of Theoretical Probability, Springer, vol. 14(1), pages 189-197, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:27:y:2014:i:2:d:10.1007_s10959-012-0431-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.