IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v163y2023icp61-84.html
   My bibliography  Save this article

Invariance principle for the capacity and the cardinality of the range of stable random walks

Author

Listed:
  • Cygan, Wojciech
  • Sandrić, Nikola
  • Šebek, Stjepan

Abstract

We prove an almost sure invariance principle for the capacity and the cardinality of the range of a class of α-stable random walks on the integer lattice Zd with d/α>5/2, and d/α>3/2, respectively. As a direct consequence, we conclude Khintchine’s and Chung’s laws of the iterated logarithm for both processes.

Suggested Citation

  • Cygan, Wojciech & Sandrić, Nikola & Šebek, Stjepan, 2023. "Invariance principle for the capacity and the cardinality of the range of stable random walks," Stochastic Processes and their Applications, Elsevier, vol. 163(C), pages 61-84.
  • Handle: RePEc:eee:spapps:v:163:y:2023:i:c:p:61-84
    DOI: 10.1016/j.spa.2023.05.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414923001138
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2023.05.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hamana, Yuji, 1998. "An almost sure invariance principle for the range of random walks," Stochastic Processes and their Applications, Elsevier, vol. 78(2), pages 131-143, November.
    2. Xia Chen, 2006. "Moderate and Small Deviations for the Ranges of One-Dimensional Random Walks," Journal of Theoretical Probability, Springer, vol. 19(3), pages 721-739, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kazuki Okamura, 2021. "Some Results for Range of Random Walk on Graph with Spectral Dimension Two," Journal of Theoretical Probability, Springer, vol. 34(3), pages 1653-1688, September.
    2. Mikhail Menshikov & Serguei Popov, 2014. "On Range and Local Time of Many-dimensional Submartingales," Journal of Theoretical Probability, Springer, vol. 27(2), pages 601-617, June.
    3. Xia Chen, 2006. "Moderate and Small Deviations for the Ranges of One-Dimensional Random Walks," Journal of Theoretical Probability, Springer, vol. 19(3), pages 721-739, December.
    4. Yuji Hamana, 2001. "Asymptotics of the Moment Generating Function for the Range of Random Walks," Journal of Theoretical Probability, Springer, vol. 14(1), pages 189-197, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:163:y:2023:i:c:p:61-84. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.