IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v33y1997i4p347-358.html
   My bibliography  Save this article

On the logarithmic average of iterated processes

Author

Listed:
  • Csáki, Endre
  • Földes, Antónia

Abstract

We prove almost sure convergence for the logarithmic average of f(W(X(t))/[psi](t)), where f is a suitable function, [psi](t) is a norming factor, W is a Wiener process and X is a suitable process, independent of W. Particular attention is paid for the case when X is the local time of a Wiener process or a reflected Wiener process.

Suggested Citation

  • Csáki, Endre & Földes, Antónia, 1997. "On the logarithmic average of iterated processes," Statistics & Probability Letters, Elsevier, vol. 33(4), pages 347-358, May.
  • Handle: RePEc:eee:stapro:v:33:y:1997:i:4:p:347-358
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(96)00147-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Horvath, Lajos & Khoshnevisan, Davar, 1995. "Weight functions and pathwise local central limit theorems," Stochastic Processes and their Applications, Elsevier, vol. 59(1), pages 105-123, September.
    2. Shi, Z., 1995. "Lower limits of iterated Wiener processes," Statistics & Probability Letters, Elsevier, vol. 23(3), pages 259-270, May.
    3. Lacey, Michael T. & Philipp, Walter, 1990. "A note on the almost sure central limit theorem," Statistics & Probability Letters, Elsevier, vol. 9(3), pages 201-205, March.
    4. Marcus, Michael B. & Rosen, Jay, 1995. "Logarithmic averages for the local times of recurrent random walks and Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 59(2), pages 175-184, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Berkes, István & Horváth, Lajos, 1996. "Between local and global logarithmic averages," Statistics & Probability Letters, Elsevier, vol. 30(4), pages 369-378, November.
    2. Fahrner, I. & Stadtmüller, U., 1998. "On almost sure max-limit theorems," Statistics & Probability Letters, Elsevier, vol. 37(3), pages 229-236, March.
    3. Berkes, István, 2001. "The law of large numbers with exceptional sets," Statistics & Probability Letters, Elsevier, vol. 55(4), pages 431-438, December.
    4. Wang, Jiang-Feng & Liang, Han-Ying, 2008. "A note on the almost sure central limit theorem for negatively associated fields," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1964-1970, September.
    5. Kifer, Yuri, 2013. "Strong approximations for nonconventional sums and almost sure limit theorems," Stochastic Processes and their Applications, Elsevier, vol. 123(6), pages 2286-2302.
    6. Pelletier, Mariane, 1999. "An Almost Sure Central Limit Theorem for Stochastic Approximation Algorithms," Journal of Multivariate Analysis, Elsevier, vol. 71(1), pages 76-93, October.
    7. Fitzsimmons, P. J. & Pitman, Jim, 1999. "Kac's moment formula and the Feynman-Kac formula for additive functionals of a Markov process," Stochastic Processes and their Applications, Elsevier, vol. 79(1), pages 117-134, January.
    8. Hörmann, Siegfried, 2006. "An extension of almost sure central limit theory," Statistics & Probability Letters, Elsevier, vol. 76(2), pages 191-202, January.
    9. Luísa Pereira & Zhongquan Tan, 2017. "Almost Sure Convergence for the Maximum of Nonstationary Random Fields," Journal of Theoretical Probability, Springer, vol. 30(3), pages 996-1013, September.
    10. Miao, Yu & Wang, Rujun & Adler, Andre, 2016. "Limit theorems for order statistics from exponentials," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 51-57.
    11. Mikhail Gordin & Michel Weber, 2002. "On the Almost Sure Central Limit Theorem for a Class of Z d -Actions," Journal of Theoretical Probability, Springer, vol. 15(2), pages 477-501, April.
    12. Berkes, István & Csáki, Endre, 2001. "A universal result in almost sure central limit theory," Stochastic Processes and their Applications, Elsevier, vol. 94(1), pages 105-134, July.
    13. Tan, Zhongquan & Peng, Zuoxiang, 2009. "Almost sure convergence for non-stationary random sequences," Statistics & Probability Letters, Elsevier, vol. 79(7), pages 857-863, April.
    14. István Berkes & Siegfried Hörmann & Lajos Horváth, 2010. "On Functional Versions of the Arc-Sine Law," Journal of Theoretical Probability, Springer, vol. 23(1), pages 109-126, March.
    15. Denker, Manfred & Zheng, Xiaofei, 2018. "On the local times of stationary processes with conditional local limit theorems," Stochastic Processes and their Applications, Elsevier, vol. 128(7), pages 2448-2462.
    16. Liu, Jin V., 2013. "On Chung’s law of the iterated logarithm for the Brownian time Lévy’s area process," Statistics & Probability Letters, Elsevier, vol. 83(5), pages 1404-1410.
    17. Csáki, E. & Földes, A., 1995. "On the logarithmic average of additive functionals," Statistics & Probability Letters, Elsevier, vol. 22(4), pages 261-268, March.
    18. Ibragimov, Ildar & Lifshits, Mikhail, 1998. "On the convergence of generalized moments in almost sure central limit theorem," Statistics & Probability Letters, Elsevier, vol. 40(4), pages 343-351, November.
    19. Bercu, B., 2004. "On the convergence of moments in the almost sure central limit theorem for martingales with statistical applications," Stochastic Processes and their Applications, Elsevier, vol. 111(1), pages 157-173, May.
    20. Yimin Xiao, 1998. "Local Times and Related Properties of Multidimensional Iterated Brownian Motion," Journal of Theoretical Probability, Springer, vol. 11(2), pages 383-408, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:33:y:1997:i:4:p:347-358. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.