IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v26y2013i1d10.1007_s10959-011-0366-3.html
   My bibliography  Save this article

Asymptotic Optimality of Isoperimetric Constants

Author

Listed:
  • Achim Wübker

    (Universität Osnabrück)

Abstract

In this paper, we investigate the existence of L 2(π)-spectral gaps for π-irreducible, positive recurrent Markov chains with a general state space Ω. We obtain necessary and sufficient conditions for the existence of L 2(π)-spectral gaps in terms of a sequence of isoperimetric constants. For reversible Markov chains, it turns out that the spectral gap can be understood in terms of convergence of an induced probability flow to the uniform flow. These results are used to recover classical results concerning uniform ergodicity and the spectral gap property as well as other new results. As an application of our result, we present a rather short proof for the fact that geometric ergodicity implies the spectral gap property. Moreover, the main result of this paper suggests that sharp upper bounds for the spectral gap should be expected when evaluating the isoperimetric flow for certain sets. We provide several examples where the obtained upper bounds are exact.

Suggested Citation

  • Achim Wübker, 2013. "Asymptotic Optimality of Isoperimetric Constants," Journal of Theoretical Probability, Springer, vol. 26(1), pages 198-221, March.
  • Handle: RePEc:spr:jotpro:v:26:y:2013:i:1:d:10.1007_s10959-011-0366-3
    DOI: 10.1007/s10959-011-0366-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-011-0366-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-011-0366-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nummelin, Esa & Tuominen, Pekka, 1982. "Geometric ergodicity of Harris recurrent Marcov chains with applications to renewal theory," Stochastic Processes and their Applications, Elsevier, vol. 12(2), pages 187-202, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leblanc, Frédérique, 1996. "Wavelet linear density estimator for a discrete-time stochastic process: Lp-losses," Statistics & Probability Letters, Elsevier, vol. 27(1), pages 71-84, March.
    2. Djellout, H. & Guillin, A., 2001. "Moderate deviations for Markov chains with atom," Stochastic Processes and their Applications, Elsevier, vol. 95(2), pages 203-217, October.
    3. Duffie, Darrell & Singleton, Kenneth J, 1993. "Simulated Moments Estimation of Markov Models of Asset Prices," Econometrica, Econometric Society, vol. 61(4), pages 929-952, July.
    4. Konstantin Avrachenkov & Alexey Piunovskiy & Yi Zhang, 2018. "Hitting Times in Markov Chains with Restart and their Application to Network Centrality," Methodology and Computing in Applied Probability, Springer, vol. 20(4), pages 1173-1188, December.
    5. Richard C. Bradley, 2021. "On some basic features of strictly stationary, reversible Markov chains," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(5-6), pages 499-533, September.
    6. Allam, Abdelazziz & Mourid, Tahar, 2002. "Geometric absolute regularity of Banach space-valued autoregressive processes," Statistics & Probability Letters, Elsevier, vol. 60(3), pages 241-252, December.
    7. Kevei, Péter, 2018. "Ergodic properties of generalized Ornstein–Uhlenbeck processes," Stochastic Processes and their Applications, Elsevier, vol. 128(1), pages 156-181.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:26:y:2013:i:1:d:10.1007_s10959-011-0366-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.