IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v24y2011i2d10.1007_s10959-009-0257-z.html
   My bibliography  Save this article

Spectral Norm of Circulant-Type Matrices

Author

Listed:
  • Arup Bose

    (Indian Statistical Institute)

  • Rajat Subhra Hazra

    (Indian Statistical Institute)

  • Koushik Saha

    (Indian Statistical Institute)

Abstract

We first discuss the convergence in probability and in distribution of the spectral norm of scaled Toeplitz, circulant, reverse circulant, symmetric circulant, and a class of k-circulant matrices when the input sequence is independent and identically distributed with finite moments of suitable order and the dimension of the matrix tends to ∞. When the input sequence is a stationary two-sided moving average process of infinite order, it is difficult to derive the limiting distribution of the spectral norm, but if the eigenvalues are scaled by the spectral density, then the limits of the maximum of modulus of these scaled eigenvalues can be derived in most of the cases.

Suggested Citation

  • Arup Bose & Rajat Subhra Hazra & Koushik Saha, 2011. "Spectral Norm of Circulant-Type Matrices," Journal of Theoretical Probability, Springer, vol. 24(2), pages 479-516, June.
  • Handle: RePEc:spr:jotpro:v:24:y:2011:i:2:d:10.1007_s10959-009-0257-z
    DOI: 10.1007/s10959-009-0257-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-009-0257-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-009-0257-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christopher Hammond & Steven J. Miller, 2005. "Distribution of Eigenvalues for the Ensemble of Real Symmetric Toeplitz Matrices," Journal of Theoretical Probability, Springer, vol. 18(3), pages 537-566, July.
    2. Einmahl, Uwe, 1989. "Extensions of results of Komlós, Major, and Tusnády to the multivariate case," Journal of Multivariate Analysis, Elsevier, vol. 28(1), pages 20-68, January.
    3. Bose, Arup & Mitra, Joydip, 2002. "Limiting spectral distribution of a special circulant," Statistics & Probability Letters, Elsevier, vol. 60(1), pages 111-120, November.
    4. Ming Dai & Arunava Mukherjea, 2001. "Identification of the Parameters of a Multivariate Normal Vector by the Distribution of the Maximum," Journal of Theoretical Probability, Springer, vol. 14(1), pages 267-298, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maurya, Shambhu Nath, 2024. "Limiting spectral distribution of Toeplitz and Hankel matrices with dependent entries," Statistics & Probability Letters, Elsevier, vol. 209(C).
    2. Glynn, Peter W. & Wang, Rob J., 2023. "A heavy-traffic perspective on departure process variability," Stochastic Processes and their Applications, Elsevier, vol. 166(C).
    3. Park, Joon Y. & Shin, Kwanho & Whang, Yoon-Jae, 2010. "A semiparametric cointegrating regression: Investigating the effects of age distributions on consumption and saving," Journal of Econometrics, Elsevier, vol. 157(1), pages 165-178, July.
    4. S{o}ren Johansen & Morten {O}rregaard Nielsen, 2022. "Weak convergence to derivatives of fractional Brownian motion," Papers 2208.02516, arXiv.org, revised Oct 2022.
    5. Steven Jackson & Steven J. Miller & Thuy Pham, 2012. "Distribution of Eigenvalues of Highly Palindromic Toeplitz Matrices," Journal of Theoretical Probability, Springer, vol. 25(2), pages 464-495, June.
    6. Bashtova, Elena & Shashkin, Alexey, 2022. "Strong Gaussian approximation for cumulative processes," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 1-18.
    7. Csörgo, Miklós & Norvaisa, Rimas & Szyszkowicz, Barbara, 1999. "Convergence of weighted partial sums when the limiting distribution is not necessarily Radon," Stochastic Processes and their Applications, Elsevier, vol. 81(1), pages 81-101, May.
    8. Cao, Guanqun & Wang, Li, 2018. "Simultaneous inference for the mean of repeated functional data," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 279-295.
    9. S. Chatterjee & A. Bose, 2004. "A New Method for Bounding Rates of Convergence of Empirical Spectral Distributions," Journal of Theoretical Probability, Springer, vol. 17(4), pages 1003-1019, October.
    10. Joon Y. Park, 2003. "Bootstrap Unit Root Tests," Econometrica, Econometric Society, vol. 71(6), pages 1845-1895, November.
    11. Jingjia Liu & Quirin Vogel, 2021. "Large Deviations of the Range of the Planar Random Walk on the Scale of the Mean," Journal of Theoretical Probability, Springer, vol. 34(4), pages 2315-2345, December.
    12. Jirak, Moritz, 2013. "A Darling–Erdös type result for stationary ellipsoids," Stochastic Processes and their Applications, Elsevier, vol. 123(6), pages 1922-1946.
    13. Bose, Arup & Guha, Suman & Hazra, Rajat Subhra & Saha, Koushik, 2011. "Circulant type matrices with heavy tailed entries," Statistics & Probability Letters, Elsevier, vol. 81(11), pages 1706-1716, November.
    14. Amir, Gideon & Benjamini, Itai & Gurel-Gurevich, Ori & Kozma, Gady, 2020. "Random walk in changing environment," Stochastic Processes and their Applications, Elsevier, vol. 130(12), pages 7463-7482.
    15. Das, Bikramjit & Fasen-Hartmann, Vicky, 2024. "On heavy-tailed risks under Gaussian copula: The effects of marginal transformation," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    16. Arup Bose & Joydip Mitra & Arnab Sen, 2012. "Limiting Spectral Distribution of Random k-Circulants," Journal of Theoretical Probability, Springer, vol. 25(3), pages 771-797, September.
    17. Vogel, Quirin, 2021. "A note on the intersections of two random walks in two dimensions," Statistics & Probability Letters, Elsevier, vol. 178(C).
    18. Csörgo, Miklós & Horváth, Lajos, 1996. "A note on the change-point problem for angular data," Statistics & Probability Letters, Elsevier, vol. 27(1), pages 61-65, March.
    19. M. Kayid & M. Shafaei Noughabi & A. M. Abouammoh, 2020. "A Nonparametric Estimator of Bivariate Quantile Residual Life Model with Application to Tumor Recurrence Data Set," Journal of Classification, Springer;The Classification Society, vol. 37(1), pages 237-253, April.
    20. Marinucci, D. & Robinson, P. M., 2000. "Weak convergence of multivariate fractional processes," Stochastic Processes and their Applications, Elsevier, vol. 86(1), pages 103-120, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:24:y:2011:i:2:d:10.1007_s10959-009-0257-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.