IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v56y1995i1p1-34.html
   My bibliography  Save this article

Chaos expansions of double intersection local time of Brownian motion in and renormalization

Author

Listed:
  • Imkeller, Peter
  • Perez-Abreu, Victor
  • Vives, Josep

Abstract

Double intersection local times [alpha](x,.) of Brownian motion which measure the size of the set of time pairs (s, t), s [not equal to] t, for which Wt and Ws + x coincide can be developed into series of multiple Wiener-Ito integrals. These series representations reveal on the one hand the degree of smoothness of [alpha](x,.) in terms of eventually negative order Sobolev spaces with respect to the canonical Dirichlet structure on Wiener space. On the other hand, they offer an easy access to renormalization of [alpha](x,.) as x --> 0. The results, valid for any dimension d, describe a pattern in which the well known cases d = 2, 3 are naturally embedded.

Suggested Citation

  • Imkeller, Peter & Perez-Abreu, Victor & Vives, Josep, 1995. "Chaos expansions of double intersection local time of Brownian motion in and renormalization," Stochastic Processes and their Applications, Elsevier, vol. 56(1), pages 1-34, March.
  • Handle: RePEc:eee:spapps:v:56:y:1995:i:1:p:1-34
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0304-4149(94)00041-Q
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Qun & Yu, Xianye, 2017. "Fractional smoothness of derivative of self-intersection local times," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 241-251.
    2. Marie F. Kratz & José R. León, 2001. "Central Limit Theorems for Level Functionals of Stationary Gaussian Processes and Fields," Journal of Theoretical Probability, Springer, vol. 14(3), pages 639-672, July.
    3. Franco Flandoli & Peter Imkeller & Ciprian A. Tudor, 2014. "2D-Stochastic Currents over the Wiener Sheet," Journal of Theoretical Probability, Springer, vol. 27(2), pages 552-575, June.
    4. Albeverio, Sergio & Hu, Yaozhong & Zhou, Xian Yin, 1997. "A remark on non-smoothness of the self-intersection local time of planar Brownian motion," Statistics & Probability Letters, Elsevier, vol. 32(1), pages 57-65, February.
    5. Yan, Litan & Shen, Guangjun, 2010. "On the collision local time of sub-fractional Brownian motions," Statistics & Probability Letters, Elsevier, vol. 80(5-6), pages 296-308, March.
    6. Naitzat, Gregory & Adler, Robert J., 2017. "A central limit theorem for the Euler integral of a Gaussian random field," Stochastic Processes and their Applications, Elsevier, vol. 127(6), pages 2036-2067.
    7. H. Uemura, 2004. "Tanaka Formula for Multidimensional Brownian Motions," Journal of Theoretical Probability, Springer, vol. 17(2), pages 347-366, April.
    8. Bojdecki, Tomasz & Gorostiza, Luis G., 1995. "Self-intersection local time for Gaussian '(d)-processes: Existence, path continuity and examples," Stochastic Processes and their Applications, Elsevier, vol. 60(2), pages 191-226, December.
    9. Uemura, H., 2008. "Generalized positive continuous additive functionals of multidimensional Brownian motion and their associated Revuz measures," Stochastic Processes and their Applications, Elsevier, vol. 118(10), pages 1870-1891, October.
    10. Rudenko, Alexey, 2012. "Some properties of the Itô–Wiener expansion of the solution of a stochastic differential equation and local times," Stochastic Processes and their Applications, Elsevier, vol. 122(6), pages 2454-2479.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:56:y:1995:i:1:p:1-34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.