IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v122y2012i6p2454-2479.html
   My bibliography  Save this article

Some properties of the Itô–Wiener expansion of the solution of a stochastic differential equation and local times

Author

Listed:
  • Rudenko, Alexey

Abstract

In this paper, we use the formula for the Itô–Wiener expansion of the solution of the stochastic differential equation proven by Krylov and Veretennikov to obtain several results concerning some properties of this expansion. Our main goal is to study the Itô–Wiener expansion of the local time at the fixed point for the solution of the stochastic differential equation in the multidimensional case (when standard local time does not exist even for Brownian motion). We show that under some conditions the renormalized local time exists in the functional space defined by the L2-norm of the action of some smoothing operator.

Suggested Citation

  • Rudenko, Alexey, 2012. "Some properties of the Itô–Wiener expansion of the solution of a stochastic differential equation and local times," Stochastic Processes and their Applications, Elsevier, vol. 122(6), pages 2454-2479.
  • Handle: RePEc:eee:spapps:v:122:y:2012:i:6:p:2454-2479
    DOI: 10.1016/j.spa.2012.03.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414912000427
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2012.03.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Imkeller, Peter & Perez-Abreu, Victor & Vives, Josep, 1995. "Chaos expansions of double intersection local time of Brownian motion in and renormalization," Stochastic Processes and their Applications, Elsevier, vol. 56(1), pages 1-34, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bojdecki, Tomasz & Gorostiza, Luis G., 1995. "Self-intersection local time for Gaussian '(d)-processes: Existence, path continuity and examples," Stochastic Processes and their Applications, Elsevier, vol. 60(2), pages 191-226, December.
    2. Uemura, H., 2008. "Generalized positive continuous additive functionals of multidimensional Brownian motion and their associated Revuz measures," Stochastic Processes and their Applications, Elsevier, vol. 118(10), pages 1870-1891, October.
    3. H. Uemura, 2004. "Tanaka Formula for Multidimensional Brownian Motions," Journal of Theoretical Probability, Springer, vol. 17(2), pages 347-366, April.
    4. Franco Flandoli & Peter Imkeller & Ciprian A. Tudor, 2014. "2D-Stochastic Currents over the Wiener Sheet," Journal of Theoretical Probability, Springer, vol. 27(2), pages 552-575, June.
    5. Albeverio, Sergio & Hu, Yaozhong & Zhou, Xian Yin, 1997. "A remark on non-smoothness of the self-intersection local time of planar Brownian motion," Statistics & Probability Letters, Elsevier, vol. 32(1), pages 57-65, February.
    6. Yan, Litan & Shen, Guangjun, 2010. "On the collision local time of sub-fractional Brownian motions," Statistics & Probability Letters, Elsevier, vol. 80(5-6), pages 296-308, March.
    7. Marie F. Kratz & José R. León, 2001. "Central Limit Theorems for Level Functionals of Stationary Gaussian Processes and Fields," Journal of Theoretical Probability, Springer, vol. 14(3), pages 639-672, July.
    8. Naitzat, Gregory & Adler, Robert J., 2017. "A central limit theorem for the Euler integral of a Gaussian random field," Stochastic Processes and their Applications, Elsevier, vol. 127(6), pages 2036-2067.
    9. Shi, Qun & Yu, Xianye, 2017. "Fractional smoothness of derivative of self-intersection local times," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 241-251.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:122:y:2012:i:6:p:2454-2479. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.