IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v13y2000i1d10.1023_a1007769924157.html
   My bibliography  Save this article

An Empirical Process Approach to the Uniform Consistency of Kernel-Type Function Estimators

Author

Listed:
  • Uwe Einmahl
  • David M. Mason

Abstract

We use general empirical process methods to determine under mild regularity conditions exact rates of uniform strong consistency of kernel-type function estimators. In the process a useful new bound on the expectation of the supremum of the empirical process is obtained

Suggested Citation

  • Uwe Einmahl & David M. Mason, 2000. "An Empirical Process Approach to the Uniform Consistency of Kernel-Type Function Estimators," Journal of Theoretical Probability, Springer, vol. 13(1), pages 1-37, January.
  • Handle: RePEc:spr:jotpro:v:13:y:2000:i:1:d:10.1023_a:1007769924157
    DOI: 10.1023/A:1007769924157
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1007769924157
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1007769924157?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Einmahl, John H. J., 1997. "Poisson and Gaussian approximation of weighted local empirical processes," Stochastic Processes and their Applications, Elsevier, vol. 70(1), pages 31-58, October.
    2. Deheuvels, Paul, 1992. "Functional laws of the iterated logarithm for large increments of empirical and quantile processes," Stochastic Processes and their Applications, Elsevier, vol. 43(1), pages 133-163, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2012. "Gaussian approximation of suprema of empirical processes," CeMMAP working papers CWP44/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Salim Bouzebda & Thouria El-hadjali & Anouar Abdeldjaoued Ferfache, 2023. "Uniform in Bandwidth Consistency of Conditional U-statistics Adaptive to Intrinsic Dimension in Presence of Censored Data," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(2), pages 1548-1606, August.
    3. Paul Deheuvels & Sarah Ouadah, 2013. "Uniform-in-Bandwidth Functional Limit Laws," Journal of Theoretical Probability, Springer, vol. 26(3), pages 697-721, September.
    4. Salim Bouzebda & Yousri Slaoui, 2023. "Nonparametric Recursive Estimation for Multivariate Derivative Functions by Stochastic Approximation Method," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 658-690, February.
    5. Bianchi, Pascal & Elgui, Kevin & Portier, François, 2023. "Conditional independence testing via weighted partial copulas," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    6. Amina Kharoua & Kenza Assia Mezhoud & Zaher Mohdeb, 2024. "On Asymptotic Properties of Local Linear Regression Predictor," SN Operations Research Forum, Springer, vol. 5(4), pages 1-17, December.
    7. D’Haultfœuille, Xavier & Hoderlein, Stefan & Sasaki, Yuya, 2023. "Nonparametric difference-in-differences in repeated cross-sections with continuous treatments," Journal of Econometrics, Elsevier, vol. 234(2), pages 664-690.
    8. Fuqing Gao, 2003. "Moderate Deviations and Large Deviations for Kernel Density Estimators," Journal of Theoretical Probability, Springer, vol. 16(2), pages 401-418, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Einmahl, J.H.J. & Deheuvels, P., 2000. "Functional limit laws for the increments of Kaplan-Meier product-limit processes and applications," Other publications TiSEM ac9bbdc0-62f8-4b48-9a84-1, Tilburg University, School of Economics and Management.
    2. John H. J. Einmahl & Fan Yang & Chen Zhou, 2021. "Testing the Multivariate Regular Variation Model," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(4), pages 907-919, October.
    3. Claudia Klüppelberg & Gabriel Kuhn & Liang Peng, 2008. "Semi‐Parametric Models for the Multivariate Tail Dependence Function – the Asymptotically Dependent Case," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(4), pages 701-718, December.
    4. Paul Deheuvels & Sarah Ouadah, 2013. "Uniform-in-Bandwidth Functional Limit Laws," Journal of Theoretical Probability, Springer, vol. 26(3), pages 697-721, September.
    5. Varron, Davit, 2011. "Some new almost sure results on the functional increments of the uniform empirical process," Stochastic Processes and their Applications, Elsevier, vol. 121(2), pages 337-356, February.
    6. Einmahl, J.H.J. & de Haan, L.F.M. & Piterbarg, V.I., 2001. "Nonparametric estimation of the spectral measure of an extreme value distribution," Other publications TiSEM c3485b9b-a0bd-456f-9baa-0, Tilburg University, School of Economics and Management.
    7. Einmahl, J.H.J. & Krajina, A. & Segers, J., 2011. "An M-Estimator for Tail Dependence in Arbitrary Dimensions," Discussion Paper 2011-013, Tilburg University, Center for Economic Research.
    8. Estate Khmaladze & Wolfgang Weil, 2008. "Local empirical processes near boundaries of convex bodies," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(4), pages 813-842, December.
    9. Varron, Davit, 2008. "Some asymptotic results on density estimators by wavelet projections," Statistics & Probability Letters, Elsevier, vol. 78(15), pages 2517-2521, October.
    10. Einmahl, John H.J. & de Haan, Laurens & Sinha, Ashoke Kumar, 1997. "Estimating the spectral measure of an extreme value distribution," Stochastic Processes and their Applications, Elsevier, vol. 70(2), pages 143-171, October.
    11. Labrador, Boris, 2008. "Strong pointwise consistency of the kT -occupation time density estimator," Statistics & Probability Letters, Elsevier, vol. 78(9), pages 1128-1137, July.
    12. Chan, Ngai-Hang & Lee, Thomas C.M. & Peng, Liang, 2010. "On nonparametric local inference for density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 509-515, February.
    13. Estate Khmaladze & Wolfgang Weil, 2018. "Fold-up derivatives of set-valued functions and the change-set problem: A Survey," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(1), pages 1-38, February.
    14. Dindar, Zacharie, 2003. "Some more results on increments of the partially observed empirical process," Statistics & Probability Letters, Elsevier, vol. 64(1), pages 25-37, August.
    15. Berthet, Philippe, 2005. "Inner rates of coverage of Strassen type sets by increments of the uniform empirical and quantile processes," Stochastic Processes and their Applications, Elsevier, vol. 115(3), pages 493-537, March.
    16. Einmahl, John & Krajina, Andrea, 2023. "Empirical Likelihood Based Testing for Multivariate Regular Variation," Discussion Paper 2023-001, Tilburg University, Center for Economic Research.
    17. Paul Deheuvels, 1998. "On the Approximation of Quantile Processes by Kiefer Processes," Journal of Theoretical Probability, Springer, vol. 11(4), pages 997-1018, October.
    18. Krajina, A., 2010. "An M-estimator of multivariate tail dependence," Other publications TiSEM 66518e07-db9a-4446-81be-c, Tilburg University, School of Economics and Management.
    19. D’Haultfœuille, Xavier & Hoderlein, Stefan & Sasaki, Yuya, 2023. "Nonparametric difference-in-differences in repeated cross-sections with continuous treatments," Journal of Econometrics, Elsevier, vol. 234(2), pages 664-690.
    20. Einmahl, J.H.J. & Khmaladze, E.V., 2007. "Central Limit Theorems For Local Emprical Processes Near Boundaries of Sets," Discussion Paper 2007-66, Tilburg University, Center for Economic Research.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:13:y:2000:i:1:d:10.1023_a:1007769924157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.