IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v70y2018i1d10.1007_s10463-017-0628-7.html
   My bibliography  Save this article

Fold-up derivatives of set-valued functions and the change-set problem: A Survey

Author

Listed:
  • Estate Khmaladze

    (Victoria University of Wellington)

  • Wolfgang Weil

    (Karlsruhe Institute of Technology)

Abstract

We give a survey on fold-up derivatives, a notion which was introduced by Khmaladze (J Math Anal Appl 334:1055–1072, 2007) and extended by Khmaladze and Weil (J Math Anal Appl 413:291–310, 2014) to describe infinitesimal changes in a set-valued function. We summarize the geometric background and discuss in detail applications in statistics, in particular to the change-set problem of spatial statistics, and show how the notion of fold-up derivatives leads to the theory of testing statistical hypotheses about the change-set. We formulate Poisson limit theorems for the log-likelihood ratio in two versions of this problem and present also the route to a central limit theorem.

Suggested Citation

  • Estate Khmaladze & Wolfgang Weil, 2018. "Fold-up derivatives of set-valued functions and the change-set problem: A Survey," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(1), pages 1-38, February.
  • Handle: RePEc:spr:aistmt:v:70:y:2018:i:1:d:10.1007_s10463-017-0628-7
    DOI: 10.1007/s10463-017-0628-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-017-0628-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-017-0628-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Einmahl, John H. J., 1997. "Poisson and Gaussian approximation of weighted local empirical processes," Stochastic Processes and their Applications, Elsevier, vol. 70(1), pages 31-58, October.
    2. Müller, Hans-Georg & Song, Kai-Sheng, 1996. "A set-indexed process in a two-region image," Stochastic Processes and their Applications, Elsevier, vol. 62(1), pages 87-101, March.
    3. Estate Khmaladze & Wolfgang Weil, 2008. "Local empirical processes near boundaries of convex bodies," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(4), pages 813-842, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John H. J. Einmahl & Fan Yang & Chen Zhou, 2021. "Testing the Multivariate Regular Variation Model," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(4), pages 907-919, October.
    2. Claudia Klüppelberg & Gabriel Kuhn & Liang Peng, 2008. "Semi‐Parametric Models for the Multivariate Tail Dependence Function – the Asymptotically Dependent Case," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(4), pages 701-718, December.
    3. Einmahl, J.H.J. & de Haan, L.F.M. & Piterbarg, V.I., 2001. "Nonparametric estimation of the spectral measure of an extreme value distribution," Other publications TiSEM c3485b9b-a0bd-456f-9baa-0, Tilburg University, School of Economics and Management.
    4. Einmahl, J.H.J. & Krajina, A. & Segers, J., 2011. "An M-Estimator for Tail Dependence in Arbitrary Dimensions," Discussion Paper 2011-013, Tilburg University, Center for Economic Research.
    5. Estate Khmaladze & Wolfgang Weil, 2008. "Local empirical processes near boundaries of convex bodies," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(4), pages 813-842, December.
    6. Einmahl, John H.J. & de Haan, Laurens & Sinha, Ashoke Kumar, 1997. "Estimating the spectral measure of an extreme value distribution," Stochastic Processes and their Applications, Elsevier, vol. 70(2), pages 143-171, October.
    7. Chan, Ngai-Hang & Lee, Thomas C.M. & Peng, Liang, 2010. "On nonparametric local inference for density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 509-515, February.
    8. Einmahl, John & Krajina, Andrea, 2023. "Empirical Likelihood Based Testing for Multivariate Regular Variation," Discussion Paper 2023-001, Tilburg University, Center for Economic Research.
    9. Krajina, A., 2010. "An M-estimator of multivariate tail dependence," Other publications TiSEM 66518e07-db9a-4446-81be-c, Tilburg University, School of Economics and Management.
    10. D’Haultfœuille, Xavier & Hoderlein, Stefan & Sasaki, Yuya, 2023. "Nonparametric difference-in-differences in repeated cross-sections with continuous treatments," Journal of Econometrics, Elsevier, vol. 234(2), pages 664-690.
    11. Einmahl, J.H.J. & Khmaladze, E.V., 2007. "Central Limit Theorems For Local Emprical Processes Near Boundaries of Sets," Discussion Paper 2007-66, Tilburg University, Center for Economic Research.
    12. Jan Beirlant & John H. J. Einmahl, 2010. "Asymptotics for the Hirsch Index," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(3), pages 355-364, September.
    13. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2012. "Gaussian approximation of suprema of empirical processes," CeMMAP working papers 44/12, Institute for Fiscal Studies.
    14. Einmahl, J.H.J. & Krajina, A. & Segers, J., 2011. "An M-Estimator for Tail Dependence in Arbitrary Dimensions," Discussion Paper 2011-013, Tilburg University, Center for Economic Research.
    15. Uwe Einmahl & David M. Mason, 2000. "An Empirical Process Approach to the Uniform Consistency of Kernel-Type Function Estimators," Journal of Theoretical Probability, Springer, vol. 13(1), pages 1-37, January.
    16. Khmaladze, Estáte V., 2013. "On the evolution of set-valued functions: An example," Statistics & Probability Letters, Elsevier, vol. 83(3), pages 898-901.
    17. Einmahl, J.H.J. & Segers, J.J.J., 2008. "Maximum Empirical Likelihood Estimation of the Spectral Measure of an Extreme Value Distribution," Other publications TiSEM e9340b9a-fe69-4e77-8594-8, Tilburg University, School of Economics and Management.
    18. Einmahl, John & Krajina, Andrea, 2023. "Empirical Likelihood Based Testing for Multivariate Regular Variation," Other publications TiSEM 261583f5-c571-48c6-8cea-9, Tilburg University, School of Economics and Management.
    19. V. Yu. Bogdanskii & O. I. Klesov & I. Molchanov, 2021. "Uniform Strong Law of Large Numbers," Methodology and Computing in Applied Probability, Springer, vol. 23(2), pages 461-470, June.
    20. Einmahl, J.H.J. & Deheuvels, P., 2000. "Functional limit laws for the increments of Kaplan-Meier product-limit processes and applications," Other publications TiSEM ac9bbdc0-62f8-4b48-9a84-1, Tilburg University, School of Economics and Management.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:70:y:2018:i:1:d:10.1007_s10463-017-0628-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.