IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v12y1999i4d10.1023_a1021653405990.html
   My bibliography  Save this article

s-Stable Laws in Insurance and Finance and Generalization to Nilpotent Lie Groups

Author

Listed:
  • Zbigniew J. Jurek

    (University of Wroclaw)

  • Daniel Neuenschwander

    (University of Lausanne)

Abstract

s-stable laws on Hilbert spaces, associated with some nonlinear transformations, were introduced by Jurek.(16, 18) Here, we interpret certain s-stable motions as limits of total amount of claims processes (up to a deterministic reserve) of a portfolio of (nontraded) excess-of-loss reinsurance contracts and show that they lead to Erlang's model. We also give explicit formulas for the price of perpetual American options in case the logarithm of the price of the underlying asset is an s-stable motion. Furthermore, we generalize the concept of s-stability to simply connected nilpotent Lie groups. For step 2-nilpotent Lie groups we characterize the Lévy measure and the s-domain of attraction of nongaussian s-stable convolution semigroups.

Suggested Citation

  • Zbigniew J. Jurek & Daniel Neuenschwander, 1999. "s-Stable Laws in Insurance and Finance and Generalization to Nilpotent Lie Groups," Journal of Theoretical Probability, Springer, vol. 12(4), pages 1089-1107, October.
  • Handle: RePEc:spr:jotpro:v:12:y:1999:i:4:d:10.1023_a:1021653405990
    DOI: 10.1023/A:1021653405990
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1021653405990
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1021653405990?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gerber, Hans U. & Shiu, Elias S.W., 1994. "Martingale Approach to Pricing Perpetual American Options," ASTIN Bulletin, Cambridge University Press, vol. 24(2), pages 195-220, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guégan, Dominique & Ielpo, Florian & Lalaharison, Hanjarivo, 2013. "Option pricing with discrete time jump processes," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2417-2445.
    2. Hyong-chol O & Song-San Jo, 2019. "Variational inequality for perpetual American option price and convergence to the solution of the difference equation," Papers 1903.05189, arXiv.org.
    3. Young Shin Kim, 2019. "Tempered stable process, first passage time, and path-dependent option pricing," Computational Management Science, Springer, vol. 16(1), pages 187-215, February.
    4. Zhu, Ke & Ling, Shiqing, 2015. "Model-based pricing for financial derivatives," Journal of Econometrics, Elsevier, vol. 187(2), pages 447-457.
    5. Christoffersen, Peter & Heston, Steve & Jacobs, Kris, 2006. "Option valuation with conditional skewness," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 253-284.
    6. Tak Siu, 2006. "Option Pricing Under Autoregressive Random Variance Models," North American Actuarial Journal, Taylor & Francis Journals, vol. 10(2), pages 62-75.
    7. Guanghua Lian & Robert J. Elliott & Petko Kalev & Zhaojun Yang, 2022. "Approximate pricing of American exchange options with jumps," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(6), pages 983-1001, June.
    8. Obradović, Lazar, 2016. "A note on the perpetual American straddle," Center for Mathematical Economics Working Papers 559, Center for Mathematical Economics, Bielefeld University.
    9. Laminou Abdou, Souleymane & Moraux, Franck, 2016. "Pricing and hedging American and hybrid strangles with finite maturity," Journal of Banking & Finance, Elsevier, vol. 62(C), pages 112-125.
    10. Aur'elien Alfonsi & Benjamin Jourdain, 2006. "A Call-Put Duality for Perpetual American Options," Papers math/0612648, arXiv.org.
    11. Junmin Shi & Michael Katehakis & Benjamin Melamed, 2013. "Martingale methods for pricing inventory penalties under continuous replenishment and compound renewal demands," Annals of Operations Research, Springer, vol. 208(1), pages 593-612, September.
    12. Tahir Choulli & Ella Elazkany & Mich`ele Vanmaele, 2024. "The second-order Esscher martingale densities for continuous-time market models," Papers 2407.03960, arXiv.org.
    13. Franck Moraux, 2009. "On perpetual American strangles," Post-Print halshs-00393811, HAL.
    14. Sheldon Lin, X., 1998. "Double barrier hitting time distributions with applications to exotic options," Insurance: Mathematics and Economics, Elsevier, vol. 23(1), pages 45-58, October.
    15. Gourieroux, C. & Monfort, A., 2007. "Econometric specification of stochastic discount factor models," Journal of Econometrics, Elsevier, vol. 136(2), pages 509-530, February.
    16. Gerber, Hans U. & Shiu, Elias S. W., 1996. "Actuarial bridges to dynamic hedging and option pricing," Insurance: Mathematics and Economics, Elsevier, vol. 18(3), pages 183-218, November.
    17. Flavia Barsotti & Maria Elvira Mancino & Monique Pontier, 2011. "Corporate Debt Value with Switching Tax Benefits and Payouts," Working Papers - Mathematical Economics 2011-10, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    18. Jing-Tang Tsay & Che-Chun Lin & Jerry T. Yang, 2018. "Pricing Mortgage-Backed Securities-First Hitting Time Approach," International Real Estate Review, Global Social Science Institute, vol. 21(4), pages 419-446.
    19. Robert Couch & Michael Dothan & Wei Wu, 2012. "Interest Tax Shields: A Barrier Options Approach," Review of Quantitative Finance and Accounting, Springer, vol. 39(1), pages 123-146, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:12:y:1999:i:4:d:10.1023_a:1021653405990. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.