IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v99y1998i1d10.1023_a1021752227797.html
   My bibliography  Save this article

Feasible Direction Interior-Point Technique for Nonlinear Optimization

Author

Listed:
  • J. Herskovits

    (Federal University of Rio de Janeiro)

Abstract

We propose a feasible direction approach for the minimization by interior-point algorithms of a smooth function under smooth equality and inequality constraints. It consists of the iterative solution in the primal and dual variables of the Karush–Kuhn–Tucker first-order optimality conditions. At each iteration, a descent direction is defined by solving a linear system. In a second stage, the linear system is perturbed so as to deflect the descent direction and obtain a feasible descent direction. A line search is then performed to get a new interior point and ensure global convergence. Based on this approach, first-order, Newton, and quasi-Newton algorithms can be obtained. To introduce the method, we consider first the inequality constrained problem and present a globally convergent basic algorithm. Particular first-order and quasi-Newton versions of this algorithm are also stated. Then, equality constraints are included. This method, which is simple to code, does not require the solution of quadratic programs and it is neither a penalty method nor a barrier method. Several practical applications and numerical results show that our method is strong and efficient.

Suggested Citation

  • J. Herskovits, 1998. "Feasible Direction Interior-Point Technique for Nonlinear Optimization," Journal of Optimization Theory and Applications, Springer, vol. 99(1), pages 121-146, October.
  • Handle: RePEc:spr:joptap:v:99:y:1998:i:1:d:10.1023_a:1021752227797
    DOI: 10.1023/A:1021752227797
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1021752227797
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1021752227797?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Renato D. C. Monteiro & Ilan Adler & Mauricio G. C. Resende, 1990. "A Polynomial-Time Primal-Dual Affine Scaling Algorithm for Linear and Convex Quadratic Programming and Its Power Series Extension," Mathematics of Operations Research, INFORMS, vol. 15(2), pages 191-214, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grigori Chapiro & Angel E. R. Gutierrez & José Herskovits & Sandro R. Mazorche & Weslley S. Pereira, 2016. "Numerical Solution of a Class of Moving Boundary Problems with a Nonlinear Complementarity Approach," Journal of Optimization Theory and Applications, Springer, vol. 168(2), pages 534-550, February.
    2. A. F. Izmailov & M. V. Solodov, 2015. "Newton-Type Methods: A Broader View," Journal of Optimization Theory and Applications, Springer, vol. 164(2), pages 577-620, February.
    3. Carolina Effio Saldivar & José Herskovits & Juan Pablo Luna & Claudia Sagastizábal, 2019. "Multidimensional Calibration Of Crude Oil And Refined Products Via Semidefinite Programming Techniques," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(01), pages 1-31, February.
    4. Stefan C. Endres & Carl Sandrock & Walter W. Focke, 2018. "A simplicial homology algorithm for Lipschitz optimisation," Journal of Global Optimization, Springer, vol. 72(2), pages 181-217, October.
    5. Alfredo Canelas & Miguel Carrasco & Julio López, 2017. "Application of the sequential parametric convex approximation method to the design of robust trusses," Journal of Global Optimization, Springer, vol. 68(1), pages 169-187, May.
    6. Napsu Karmitsa & Mario Tanaka Filho & José Herskovits, 2011. "Globally Convergent Cutting Plane Method for Nonconvex Nonsmooth Minimization," Journal of Optimization Theory and Applications, Springer, vol. 148(3), pages 528-549, March.
    7. Angel E. R. Gutierrez & Sandro R. Mazorche & José Herskovits & Grigori Chapiro, 2017. "An Interior Point Algorithm for Mixed Complementarity Nonlinear Problems," Journal of Optimization Theory and Applications, Springer, vol. 175(2), pages 432-449, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. E. de Klerk & C. Roos & T. Terlaky, 1998. "Polynomial Primal-Dual Affine Scaling Algorithms in Semidefinite Programming," Journal of Combinatorial Optimization, Springer, vol. 2(1), pages 51-69, March.
    2. Camila de Lima & Antonio Roberto Balbo & Thiago Pedro Donadon Homem & Helenice de Oliveira Florentino Silva, 2017. "A hybrid approach combining interior-point and branch-and-bound methods applied to the problem of sugar cane waste," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(2), pages 147-164, February.
    3. Sturm, J.F., 2002. "Implementation of Interior Point Methods for Mixed Semidefinite and Second Order Cone Optimization Problems," Other publications TiSEM b25faf5d-0142-4e14-b598-a, Tilburg University, School of Economics and Management.
    4. Yaguang Yang, 2013. "A Polynomial Arc-Search Interior-Point Algorithm for Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 158(3), pages 859-873, September.
    5. Ali Mohammad-Nezhad & Tamás Terlaky, 2017. "A polynomial primal-dual affine scaling algorithm for symmetric conic optimization," Computational Optimization and Applications, Springer, vol. 66(3), pages 577-600, April.
    6. Luiz-Rafael Santos & Fernando Villas-Bôas & Aurelio R. L. Oliveira & Clovis Perin, 2019. "Optimized choice of parameters in interior-point methods for linear programming," Computational Optimization and Applications, Springer, vol. 73(2), pages 535-574, June.
    7. Masakazu Muramatsu & Robert J. Vanderbei, 1999. "Primal-Dual Affine-Scaling Algorithms Fail for Semidefinite Programming," Mathematics of Operations Research, INFORMS, vol. 24(1), pages 149-175, February.
    8. M. J. Best & J. Hlouskova, 2007. "An Algorithm for Portfolio Optimization with Variable Transaction Costs, Part 2: Computational Analysis," Journal of Optimization Theory and Applications, Springer, vol. 135(3), pages 531-547, December.
    9. Josef Stoer & Martin Wechs & Shinji Mizuno, 1998. "High Order Infeasible-Interior-Point Methods for Solving Sufficient Linear Complementarity Problems," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 832-862, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:99:y:1998:i:1:d:10.1023_a:1021752227797. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.