IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v175y2017i2d10.1007_s10957-017-1171-7.html
   My bibliography  Save this article

An Interior Point Algorithm for Mixed Complementarity Nonlinear Problems

Author

Listed:
  • Angel E. R. Gutierrez

    (Instituto de Matemática y Ciencias Afines)

  • Sandro R. Mazorche

    (Universidade Federal de Juiz de Fora)

  • José Herskovits

    (Military Institute of Engineering
    Federal University of Rio de Janeiro)

  • Grigori Chapiro

    (Universidade Federal de Juiz de Fora)

Abstract

Nonlinear complementarity and mixed complementarity problems arise in mathematical models describing several applications in Engineering, Economics and different branches of physics. Previously, robust and efficient feasible directions interior point algorithm was presented for nonlinear complementarity problems. In this paper, it is extended to mixed nonlinear complementarity problems. At each iteration, the algorithm finds a feasible direction with respect to the region defined by the inequality conditions, which is also monotonic descent direction for the potential function. Then, an approximate line search along this direction is performed in order to define the next iteration. Global and asymptotic convergence for the algorithm is investigated. The proposed algorithm is tested on several benchmark problems. The results are in good agreement with the asymptotic analysis. Finally, the algorithm is applied to the elastic–plastic torsion problem encountered in the field of Solid Mechanics.

Suggested Citation

  • Angel E. R. Gutierrez & Sandro R. Mazorche & José Herskovits & Grigori Chapiro, 2017. "An Interior Point Algorithm for Mixed Complementarity Nonlinear Problems," Journal of Optimization Theory and Applications, Springer, vol. 175(2), pages 432-449, November.
  • Handle: RePEc:spr:joptap:v:175:y:2017:i:2:d:10.1007_s10957-017-1171-7
    DOI: 10.1007/s10957-017-1171-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-017-1171-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-017-1171-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Herskovits, 1998. "Feasible Direction Interior-Point Technique for Nonlinear Optimization," Journal of Optimization Theory and Applications, Springer, vol. 99(1), pages 121-146, October.
    2. Grigori Chapiro & Angel E. R. Gutierrez & José Herskovits & Sandro R. Mazorche & Weslley S. Pereira, 2016. "Numerical Solution of a Class of Moving Boundary Problems with a Nonlinear Complementarity Approach," Journal of Optimization Theory and Applications, Springer, vol. 168(2), pages 534-550, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yiyin Cao & Chuangyin Dang & Yabin Sun, 2022. "Complementarity Enhanced Nash’s Mappings and Differentiable Homotopy Methods to Select Perfect Equilibria," Journal of Optimization Theory and Applications, Springer, vol. 192(2), pages 533-563, February.
    2. Chuangyin Dang & P. Jean-Jacques Herings & Peixuan Li, 2022. "An Interior-Point Differentiable Path-Following Method to Compute Stationary Equilibria in Stochastic Games," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1403-1418, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carolina Effio Saldivar & José Herskovits & Juan Pablo Luna & Claudia Sagastizábal, 2019. "Multidimensional Calibration Of Crude Oil And Refined Products Via Semidefinite Programming Techniques," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(01), pages 1-31, February.
    2. Grigori Chapiro & Angel E. R. Gutierrez & José Herskovits & Sandro R. Mazorche & Weslley S. Pereira, 2016. "Numerical Solution of a Class of Moving Boundary Problems with a Nonlinear Complementarity Approach," Journal of Optimization Theory and Applications, Springer, vol. 168(2), pages 534-550, February.
    3. A. F. Izmailov & M. V. Solodov, 2015. "Newton-Type Methods: A Broader View," Journal of Optimization Theory and Applications, Springer, vol. 164(2), pages 577-620, February.
    4. Stefan C. Endres & Carl Sandrock & Walter W. Focke, 2018. "A simplicial homology algorithm for Lipschitz optimisation," Journal of Global Optimization, Springer, vol. 72(2), pages 181-217, October.
    5. Alfredo Canelas & Miguel Carrasco & Julio López, 2017. "Application of the sequential parametric convex approximation method to the design of robust trusses," Journal of Global Optimization, Springer, vol. 68(1), pages 169-187, May.
    6. Napsu Karmitsa & Mario Tanaka Filho & José Herskovits, 2011. "Globally Convergent Cutting Plane Method for Nonconvex Nonsmooth Minimization," Journal of Optimization Theory and Applications, Springer, vol. 148(3), pages 528-549, March.
    7. Canelas, Alfredo & Pereira, Antonio & Roche, Jean R. & Brancher, Jean P., 2019. "Solution of the equilibrium problem in electromagnetic casting considering a solid inclusion in the melt," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 160(C), pages 126-137.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:175:y:2017:i:2:d:10.1007_s10957-017-1171-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.