IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v70y2018i3d10.1007_s10898-017-0601-2.html
   My bibliography  Save this article

Corrections to: Differentiable McCormick relaxations

Author

Listed:
  • Kamil A. Khan

    (McMaster University)

  • Matthew Wilhelm

    (University of Connecticut)

  • Matthew D. Stuber

    (University of Connecticut)

  • Huiyi Cao

    (McMaster University)

  • Harry A. J. Watson

    (Massachusetts Institute of Technology)

  • Paul I. Barton

    (Massachusetts Institute of Technology)

Abstract

These errata correct various errors in the closed-form relaxations provided by Khan, Watson, and Barton in the article “Differentiable McCormick Relaxations” (J Glob Optim, 67:687–729, 2017). Without these corrections, the provided closed-form relaxations may fail to be convex or concave and may fail to be valid relaxations.

Suggested Citation

  • Kamil A. Khan & Matthew Wilhelm & Matthew D. Stuber & Huiyi Cao & Harry A. J. Watson & Paul I. Barton, 2018. "Corrections to: Differentiable McCormick relaxations," Journal of Global Optimization, Springer, vol. 70(3), pages 705-706, March.
  • Handle: RePEc:spr:jglopt:v:70:y:2018:i:3:d:10.1007_s10898-017-0601-2
    DOI: 10.1007/s10898-017-0601-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-017-0601-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-017-0601-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matthew E. Wilhelm & Matthew D. Stuber, 2023. "Improved Convex and Concave Relaxations of Composite Bilinear Forms," Journal of Optimization Theory and Applications, Springer, vol. 197(1), pages 174-204, April.
    2. Artur M. Schweidtmann & Alexander Mitsos, 2019. "Deterministic Global Optimization with Artificial Neural Networks Embedded," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 925-948, March.
    3. Matthew E. Wilhelm & Chenyu Wang & Matthew D. Stuber, 2023. "Convex and concave envelopes of artificial neural network activation functions for deterministic global optimization," Journal of Global Optimization, Springer, vol. 85(3), pages 569-594, March.
    4. Huiyi Cao & Kamil A. Khan, 2023. "General convex relaxations of implicit functions and inverse functions," Journal of Global Optimization, Springer, vol. 86(3), pages 545-572, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:70:y:2018:i:3:d:10.1007_s10898-017-0601-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.