IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v195y2022i3d10.1007_s10957-022-02112-0.html
   My bibliography  Save this article

Combinatorial Convexity in Hadamard Manifolds: Existence for Equilibrium Problems

Author

Listed:
  • Glaydston de Carvalho Bento

    (Universidade Federal de Goiás)

  • João Xavier Cruz Neto

    (Universidade Federal do Piauí)

  • Ítalo Dowell Lira Melo

    (Universidade Federal do Piauí)

Abstract

In this paper is introduced a proposal of resolvent for equilibrium problems in terms of the Busemann’s function. A advantage of this new proposal is that, in addition to be a natural extension of its counterpart in the linear setting introduced by Combettes and Hirstoaga (J Nonlinear Convex Anal 6(1): 117–136, 2005), the new term that performs regularization is a convex function in general Hadamard manifolds, being a first step to fully answer to the problem posed by Cruz Neto et al. (J Convex Anal 24(2): 679–684, 2017 Section 5). During our study, some elements of convex analysis are explored in the context of Hadamard manifolds, which are interesting on their own. In particular, we introduce a new definition of convex combination (now commutative) of any finite collection of points and present an associated Jensen-type inequality.

Suggested Citation

  • Glaydston de Carvalho Bento & João Xavier Cruz Neto & Ítalo Dowell Lira Melo, 2022. "Combinatorial Convexity in Hadamard Manifolds: Existence for Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 195(3), pages 1087-1105, December.
  • Handle: RePEc:spr:joptap:v:195:y:2022:i:3:d:10.1007_s10957-022-02112-0
    DOI: 10.1007/s10957-022-02112-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-022-02112-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-022-02112-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. E. E. A. Batista & G. C. Bento & O. P. Ferreira, 2015. "An Existence Result for the Generalized Vector Equilibrium Problem on Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 167(2), pages 550-557, November.
    2. Xiangmei Wang & Chong Li & Jen-Chih Yao, 2016. "On Some Basic Results Related to Affine Functions on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 170(3), pages 783-803, September.
    3. O. Ferreira & L. Pérez & S. Németh, 2005. "Singularities of Monotone Vector Fields and an Extragradient-type Algorithm," Journal of Global Optimization, Springer, vol. 31(1), pages 133-151, January.
    4. Li-wen Zhou & Nan-jing Huang, 2019. "A Revision on Geodesic Pseudo-Convex Combination and Knaster–Kuratowski–Mazurkiewicz Theorem on Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 182(3), pages 1186-1198, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. X. Cruz Neto & F. M. O. Jacinto & P. A. Soares & J. C. O. Souza, 2018. "On maximal monotonicity of bifunctions on Hadamard manifolds," Journal of Global Optimization, Springer, vol. 72(3), pages 591-601, November.
    2. João Carlos de O. Souza, 2018. "Proximal Point Methods for Lipschitz Functions on Hadamard Manifolds: Scalar and Vectorial Cases," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 745-760, December.
    3. J. H. Wang & G. López & V. Martín-Márquez & C. Li, 2010. "Monotone and Accretive Vector Fields on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 146(3), pages 691-708, September.
    4. J. H. Wang, 2011. "Convergence of Newton’s Method for Sections on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 148(1), pages 125-145, January.
    5. X. M. Wang & J. H. Wang & C. Li, 2023. "Convergence of Inexact Steepest Descent Algorithm for Multiobjective Optimizations on Riemannian Manifolds Without Curvature Constraints," Journal of Optimization Theory and Applications, Springer, vol. 198(1), pages 187-214, July.
    6. G. C. Bento & J. X. Cruz Neto & P. A. Soares & A. Soubeyran, 2022. "A new regularization of equilibrium problems on Hadamard manifolds: applications to theories of desires," Annals of Operations Research, Springer, vol. 316(2), pages 1301-1318, September.
    7. Li-Wen Zhou & Nan-Jing Huang, 2013. "Existence of Solutions for Vector Optimization on Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 157(1), pages 44-53, April.
    8. X. M. Wang & C. Li & J. C. Yao, 2015. "Subgradient Projection Algorithms for Convex Feasibility on Riemannian Manifolds with Lower Bounded Curvatures," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 202-217, January.
    9. Guo-ji Tang & Nan-jing Huang, 2012. "Korpelevich’s method for variational inequality problems on Hadamard manifolds," Journal of Global Optimization, Springer, vol. 54(3), pages 493-509, November.
    10. Jin-Hua Wang & Jen-Chih Yao & Chong Li, 2012. "Gauss–Newton method for convex composite optimizations on Riemannian manifolds," Journal of Global Optimization, Springer, vol. 53(1), pages 5-28, May.
    11. G. C. Bento & J. X. Cruz Neto, 2013. "A Subgradient Method for Multiobjective Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 159(1), pages 125-137, October.
    12. Xiao-bo Li & Li-wen Zhou & Nan-jing Huang, 2016. "Gap Functions and Global Error Bounds for Generalized Mixed Variational Inequalities on Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 168(3), pages 830-849, March.
    13. Glaydston C. Bento & João X. Cruz Neto & Jurandir O. Lopes & Ítalo D. L. Melo & Pedro Silva Filho, 2024. "A New Approach About Equilibrium Problems via Busemann Functions," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 428-436, January.
    14. Glaydston Carvalho Bento & João Xavier Cruz Neto & Paulo Roberto Oliveira, 2016. "A New Approach to the Proximal Point Method: Convergence on General Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 168(3), pages 743-755, March.
    15. Xiangmei Wang & Chong Li & Jen-Chih Yao, 2016. "On Some Basic Results Related to Affine Functions on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 170(3), pages 783-803, September.
    16. Li-wen Zhou & Yi-bin Xiao & Nan-jing Huang, 2017. "New Characterization of Geodesic Convexity on Hadamard Manifolds with Applications," Journal of Optimization Theory and Applications, Springer, vol. 172(3), pages 824-844, March.
    17. Li-wen Zhou & Nan-jing Huang, 2019. "A Revision on Geodesic Pseudo-Convex Combination and Knaster–Kuratowski–Mazurkiewicz Theorem on Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 182(3), pages 1186-1198, September.
    18. Konrawut Khammahawong & Parin Chaipunya & Kamonrat Sombut, 2022. "Approximating Common Fixed Points of Nonexpansive Mappings on Hadamard Manifolds with Applications," Mathematics, MDPI, vol. 10(21), pages 1-20, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:195:y:2022:i:3:d:10.1007_s10957-022-02112-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.