IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v53y2012i1p5-28.html
   My bibliography  Save this article

Gauss–Newton method for convex composite optimizations on Riemannian manifolds

Author

Listed:
  • Jin-Hua Wang
  • Jen-Chih Yao
  • Chong Li

Abstract

No abstract is available for this item.

Suggested Citation

  • Jin-Hua Wang & Jen-Chih Yao & Chong Li, 2012. "Gauss–Newton method for convex composite optimizations on Riemannian manifolds," Journal of Global Optimization, Springer, vol. 53(1), pages 5-28, May.
  • Handle: RePEc:spr:jglopt:v:53:y:2012:i:1:p:5-28
    DOI: 10.1007/s10898-010-9638-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-010-9638-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-010-9638-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. O. Ferreira & L. Pérez & S. Németh, 2005. "Singularities of Monotone Vector Fields and an Extragradient-type Algorithm," Journal of Global Optimization, Springer, vol. 31(1), pages 133-151, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Petre Birtea & Dan Comănescu, 2017. "Newton Algorithm on Constraint Manifolds and the 5-Electron Thomson Problem," Journal of Optimization Theory and Applications, Springer, vol. 173(2), pages 563-583, May.
    2. G. C. Bento & J. X. Cruz Neto, 2013. "A Subgradient Method for Multiobjective Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 159(1), pages 125-137, October.
    3. Bittencourt, Tiberio & Ferreira, Orizon Pereira, 2015. "Local convergence analysis of Inexact Newton method with relative residual error tolerance under majorant condition in Riemannian manifolds," Applied Mathematics and Computation, Elsevier, vol. 261(C), pages 28-38.
    4. T. Bittencourt & O. P. Ferreira, 2017. "Kantorovich’s theorem on Newton’s method under majorant condition in Riemannian manifolds," Journal of Global Optimization, Springer, vol. 68(2), pages 387-411, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. João Carlos de O. Souza, 2018. "Proximal Point Methods for Lipschitz Functions on Hadamard Manifolds: Scalar and Vectorial Cases," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 745-760, December.
    2. J. H. Wang & G. López & V. Martín-Márquez & C. Li, 2010. "Monotone and Accretive Vector Fields on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 146(3), pages 691-708, September.
    3. J. H. Wang, 2011. "Convergence of Newton’s Method for Sections on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 148(1), pages 125-145, January.
    4. J. X. Cruz Neto & F. M. O. Jacinto & P. A. Soares & J. C. O. Souza, 2018. "On maximal monotonicity of bifunctions on Hadamard manifolds," Journal of Global Optimization, Springer, vol. 72(3), pages 591-601, November.
    5. X. M. Wang & J. H. Wang & C. Li, 2023. "Convergence of Inexact Steepest Descent Algorithm for Multiobjective Optimizations on Riemannian Manifolds Without Curvature Constraints," Journal of Optimization Theory and Applications, Springer, vol. 198(1), pages 187-214, July.
    6. G. C. Bento & J. X. Cruz Neto & P. A. Soares & A. Soubeyran, 2022. "A new regularization of equilibrium problems on Hadamard manifolds: applications to theories of desires," Annals of Operations Research, Springer, vol. 316(2), pages 1301-1318, September.
    7. Li-Wen Zhou & Nan-Jing Huang, 2013. "Existence of Solutions for Vector Optimization on Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 157(1), pages 44-53, April.
    8. X. M. Wang & C. Li & J. C. Yao, 2015. "Subgradient Projection Algorithms for Convex Feasibility on Riemannian Manifolds with Lower Bounded Curvatures," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 202-217, January.
    9. Guo-ji Tang & Nan-jing Huang, 2012. "Korpelevich’s method for variational inequality problems on Hadamard manifolds," Journal of Global Optimization, Springer, vol. 54(3), pages 493-509, November.
    10. G. C. Bento & J. X. Cruz Neto, 2013. "A Subgradient Method for Multiobjective Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 159(1), pages 125-137, October.
    11. Glaydston de Carvalho Bento & João Xavier Cruz Neto & Ítalo Dowell Lira Melo, 2022. "Combinatorial Convexity in Hadamard Manifolds: Existence for Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 195(3), pages 1087-1105, December.
    12. Xiao-bo Li & Li-wen Zhou & Nan-jing Huang, 2016. "Gap Functions and Global Error Bounds for Generalized Mixed Variational Inequalities on Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 168(3), pages 830-849, March.
    13. Glaydston Carvalho Bento & João Xavier Cruz Neto & Paulo Roberto Oliveira, 2016. "A New Approach to the Proximal Point Method: Convergence on General Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 168(3), pages 743-755, March.
    14. Xiangmei Wang & Chong Li & Jen-Chih Yao, 2016. "On Some Basic Results Related to Affine Functions on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 170(3), pages 783-803, September.
    15. Li-wen Zhou & Yi-bin Xiao & Nan-jing Huang, 2017. "New Characterization of Geodesic Convexity on Hadamard Manifolds with Applications," Journal of Optimization Theory and Applications, Springer, vol. 172(3), pages 824-844, March.
    16. Li-wen Zhou & Nan-jing Huang, 2019. "A Revision on Geodesic Pseudo-Convex Combination and Knaster–Kuratowski–Mazurkiewicz Theorem on Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 182(3), pages 1186-1198, September.
    17. Konrawut Khammahawong & Parin Chaipunya & Kamonrat Sombut, 2022. "Approximating Common Fixed Points of Nonexpansive Mappings on Hadamard Manifolds with Applications," Mathematics, MDPI, vol. 10(21), pages 1-20, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:53:y:2012:i:1:p:5-28. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.