IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v191y2021i2d10.1007_s10957-021-01810-5.html
   My bibliography  Save this article

Modified Legendre–Gauss–Radau Collocation Method for Optimal Control Problems with Nonsmooth Solutions

Author

Listed:
  • Joseph D. Eide

    (University of Florida)

  • William W. Hager

    (University of Florida
    Society for Industrial and Applied Mathematics)

  • Anil V. Rao

    (University of Florida
    AIAA)

Abstract

A new method is developed for solving optimal control problems whose solutions are nonsmooth. The method developed in this paper employs a modified form of the Legendre–Gauss–Radau orthogonal direct collocation method. This modified Legendre–Gauss–Radau method adds two variables and two constraints at the end of a mesh interval when compared with a previously developed standard Legendre–Gauss–Radau collocation method. The two additional variables are the time at the interface between two mesh intervals and the control at the end of each mesh interval. The two additional constraints are a collocation condition for those differential equations that depend upon the control and an inequality constraint on the control at the endpoint of each mesh interval. The additional constraints modify the search space of the nonlinear programming problem such that an accurate approximation to the location of the nonsmoothness is obtained. The transformed adjoint system of the modified Legendre–Gauss–Radau method is then developed. Using this transformed adjoint system, a method is developed to transform the Lagrange multipliers of the nonlinear programming problem to the costate of the optimal control problem. Furthermore, it is shown that the costate estimate satisfies one of the Weierstrass–Erdmann optimality conditions. Finally, the method developed in this paper is demonstrated on an example whose solution is nonsmooth.

Suggested Citation

  • Joseph D. Eide & William W. Hager & Anil V. Rao, 2021. "Modified Legendre–Gauss–Radau Collocation Method for Optimal Control Problems with Nonsmooth Solutions," Journal of Optimization Theory and Applications, Springer, vol. 191(2), pages 600-633, December.
  • Handle: RePEc:spr:joptap:v:191:y:2021:i:2:d:10.1007_s10957-021-01810-5
    DOI: 10.1007/s10957-021-01810-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-021-01810-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-021-01810-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. William W. Hager & Hongyan Hou & Subhashree Mohapatra & Anil V. Rao & Xiang-Sheng Wang, 2019. "Correction to: Convergence rate for a Radau hp collocation method applied to constrained optimal control," Computational Optimization and Applications, Springer, vol. 74(1), pages 315-316, September.
    2. Wanchun Chen & Wenhao Du & William W. Hager & Liang Yang, 2019. "Bounds for integration matrices that arise in Gauss and Radau collocation," Computational Optimization and Applications, Springer, vol. 74(1), pages 259-273, September.
    3. William W. Hager & Hongyan Hou & Subhashree Mohapatra & Anil V. Rao & Xiang-Sheng Wang, 2019. "Convergence rate for a Radau hp collocation method applied to constrained optimal control," Computational Optimization and Applications, Springer, vol. 74(1), pages 275-314, September.
    4. William W. Hager & Hongyan Hou & Anil V. Rao, 2016. "Convergence Rate for a Gauss Collocation Method Applied to Unconstrained Optimal Control," Journal of Optimization Theory and Applications, Springer, vol. 169(3), pages 801-824, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wanchun Chen & Wenhao Du & William W. Hager & Liang Yang, 2019. "Bounds for integration matrices that arise in Gauss and Radau collocation," Computational Optimization and Applications, Springer, vol. 74(1), pages 259-273, September.
    2. Elisha R. Pager & Anil V. Rao, 2022. "Method for solving bang-bang and singular optimal control problems using adaptive Radau collocation," Computational Optimization and Applications, Springer, vol. 81(3), pages 857-887, April.
    3. William W. Hager & Hongyan Hou & Subhashree Mohapatra & Anil V. Rao & Xiang-Sheng Wang, 2019. "Convergence rate for a Radau hp collocation method applied to constrained optimal control," Computational Optimization and Applications, Springer, vol. 74(1), pages 275-314, September.
    4. Zhang, Zemian & Chen, Xuesong, 2021. "A conjugate gradient method for distributed optimal control problems with nonhomogeneous Helmholtz equation," Applied Mathematics and Computation, Elsevier, vol. 402(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:191:y:2021:i:2:d:10.1007_s10957-021-01810-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.