IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v74y2019i1d10.1007_s10589-019-00100-1.html
   My bibliography  Save this article

Convergence rate for a Radau hp collocation method applied to constrained optimal control

Author

Listed:
  • William W. Hager

    (University of Florida)

  • Hongyan Hou

    (Minnesota State University Moorhead)

  • Subhashree Mohapatra

    (University of Florida
    SRM Institute of Science and Technology)

  • Anil V. Rao

    (University of Florida)

  • Xiang-Sheng Wang

    (University of Louisiana at Lafayette)

Abstract

For control problems with control constraints, a local convergence rate is established for an hp-method based on collocation at the Radau quadrature points in each mesh interval of the discretization. If the continuous problem has a sufficiently smooth solution and the Hamiltonian satisfies a strong convexity condition, then the discrete problem possesses a local minimizer in a neighborhood of the continuous solution, and as either the number of collocation points or the number of mesh intervals increase, the discrete solution convergences to the continuous solution in the sup-norm. The convergence is exponentially fast with respect to the degree of the polynomials on each mesh interval, while the error is bounded by a polynomial in the mesh spacing. An advantage of the hp-scheme over global polynomials is that there is a convergence guarantee when the mesh is sufficiently small, while the convergence result for global polynomials requires that a norm of the linearized dynamics is sufficiently small. Numerical examples explore the convergence theory.

Suggested Citation

  • William W. Hager & Hongyan Hou & Subhashree Mohapatra & Anil V. Rao & Xiang-Sheng Wang, 2019. "Convergence rate for a Radau hp collocation method applied to constrained optimal control," Computational Optimization and Applications, Springer, vol. 74(1), pages 275-314, September.
  • Handle: RePEc:spr:coopap:v:74:y:2019:i:1:d:10.1007_s10589-019-00100-1
    DOI: 10.1007/s10589-019-00100-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-019-00100-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-019-00100-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. William W. Hager & Hongyan Hou & Anil V. Rao, 2016. "Convergence Rate for a Gauss Collocation Method Applied to Unconstrained Optimal Control," Journal of Optimization Theory and Applications, Springer, vol. 169(3), pages 801-824, June.
    2. Wanchun Chen & Wenhao Du & William W. Hager & Liang Yang, 2019. "Bounds for integration matrices that arise in Gauss and Radau collocation," Computational Optimization and Applications, Springer, vol. 74(1), pages 259-273, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wanchun Chen & Wenhao Du & William W. Hager & Liang Yang, 2019. "Bounds for integration matrices that arise in Gauss and Radau collocation," Computational Optimization and Applications, Springer, vol. 74(1), pages 259-273, September.
    2. Joseph D. Eide & William W. Hager & Anil V. Rao, 2021. "Modified Legendre–Gauss–Radau Collocation Method for Optimal Control Problems with Nonsmooth Solutions," Journal of Optimization Theory and Applications, Springer, vol. 191(2), pages 600-633, December.
    3. Zhang, Zemian & Chen, Xuesong, 2021. "A conjugate gradient method for distributed optimal control problems with nonhomogeneous Helmholtz equation," Applied Mathematics and Computation, Elsevier, vol. 402(C).
    4. Elisha R. Pager & Anil V. Rao, 2022. "Method for solving bang-bang and singular optimal control problems using adaptive Radau collocation," Computational Optimization and Applications, Springer, vol. 81(3), pages 857-887, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joseph D. Eide & William W. Hager & Anil V. Rao, 2021. "Modified Legendre–Gauss–Radau Collocation Method for Optimal Control Problems with Nonsmooth Solutions," Journal of Optimization Theory and Applications, Springer, vol. 191(2), pages 600-633, December.
    2. Elisha R. Pager & Anil V. Rao, 2022. "Method for solving bang-bang and singular optimal control problems using adaptive Radau collocation," Computational Optimization and Applications, Springer, vol. 81(3), pages 857-887, April.
    3. Wanchun Chen & Wenhao Du & William W. Hager & Liang Yang, 2019. "Bounds for integration matrices that arise in Gauss and Radau collocation," Computational Optimization and Applications, Springer, vol. 74(1), pages 259-273, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:74:y:2019:i:1:d:10.1007_s10589-019-00100-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.