IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v191y2021i2d10.1007_s10957-020-01757-z.html
   My bibliography  Save this article

Nash Equilibrium Seeking in Quadratic Noncooperative Games Under Two Delayed Information-Sharing Schemes

Author

Listed:
  • Tiago Roux Oliveira

    (State University of Rio de Janeiro (UERJ))

  • Victor Hugo Pereira Rodrigues

    (Federal University of Rio de Janeiro (UFRJ/COPPE))

  • Miroslav Krstić

    (University of California at San Diego (UCSD))

  • Tamer Başar

    (University of Illinois at Urbana-Champaign)

Abstract

In this paper, we propose non-model-based strategies for locally stable convergence to Nash equilibrium in quadratic noncooperative games where acquisition of information (of two different types) incurs delays. Two sets of results are introduced: (a) one, which we call cooperative scenario, where each player employs the knowledge of the functional form of his payoff and knowledge of other players’ actions, but with delays; and (b) the second one, which we term the noncooperative scenario, where the players have access only to their own payoff values, again with delay. Both approaches are based on the extremum seeking perspective, which has previously been reported for real-time optimization problems by exploring sinusoidal excitation signals to estimate the Gradient (first derivative) and Hessian (second derivative) of unknown quadratic functions. In order to compensate distinct delays in the inputs of the players, we have employed predictor feedback. We apply a small-gain analysis as well as averaging theory in infinite dimensions, due to the infinite-dimensional state of the time delays, in order to obtain local convergence results for the unknown quadratic payoffs to a small neighborhood of the Nash equilibrium. We quantify the size of these residual sets and corroborate the theoretical results numerically on an example of a two-player game with delays.

Suggested Citation

  • Tiago Roux Oliveira & Victor Hugo Pereira Rodrigues & Miroslav Krstić & Tamer Başar, 2021. "Nash Equilibrium Seeking in Quadratic Noncooperative Games Under Two Delayed Information-Sharing Schemes," Journal of Optimization Theory and Applications, Springer, vol. 191(2), pages 700-735, December.
  • Handle: RePEc:spr:joptap:v:191:y:2021:i:2:d:10.1007_s10957-020-01757-z
    DOI: 10.1007/s10957-020-01757-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-020-01757-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-020-01757-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Clémence Alasseur & Imen Ben Taher & Anis Matoussi, 2020. "An Extended Mean Field Game for Storage in Smart Grids," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 644-670, February.
    2. John Cotrina & Javier Zúñiga, 2018. "Time-Dependent Generalized Nash Equilibrium Problem," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 1054-1064, December.
    3. Olivier Menoukeu Pamen, 2015. "Optimal Control for Stochastic Delay Systems Under Model Uncertainty: A Stochastic Differential Game Approach," Journal of Optimization Theory and Applications, Springer, vol. 167(3), pages 998-1031, December.
    4. Wenna Wang & Hao Sun & Rene (J.R.) van den Brink & Genjiu Xu, 2018. "The family of ideal values for cooperative games," Tinbergen Institute Discussion Papers 18-002/II, Tinbergen Institute.
    5. René Carmona & Jean-Pierre Fouque & Seyyed Mostafa Mousavi & Li-Hsien Sun, 2018. "Systemic Risk and Stochastic Games with Delay," Journal of Optimization Theory and Applications, Springer, vol. 179(2), pages 366-399, November.
    6. Didier Aussel & Anton Svensson, 2019. "Towards Tractable Constraint Qualifications for Parametric Optimisation Problems and Applications to Generalised Nash Games," Journal of Optimization Theory and Applications, Springer, vol. 182(1), pages 404-416, July.
    7. V. Y. Glizer & J. Shinar, 2001. "Optimal Evasion from a Pursuer with Delayed Information," Journal of Optimization Theory and Applications, Springer, vol. 111(1), pages 7-38, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masaaki Fujii & Akihiko Takahashi, 2021. "Equilibrium Price Formation with a Major Player and its Mean Field Limit," CARF F-Series CARF-F-509, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    2. William Lefebvre & Enzo Miller, 2021. "Linear-quadratic stochastic delayed control and deep learning resolution," Working Papers hal-03145949, HAL.
    3. Arvind Shrivats & Dena Firoozi & Sebastian Jaimungal, 2020. "A Mean-Field Game Approach to Equilibrium Pricing in Solar Renewable Energy Certificate Markets," Papers 2003.04938, arXiv.org, revised Aug 2021.
    4. Masaaki Fujii, 2020. "Probabilistic Approach to Mean Field Games and Mean Field Type Control Problems with Multiple Populations," CARF F-Series CARF-F-497, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    5. Xi, Haoning & Aussel, Didier & Liu, Wei & Waller, S.Travis. & Rey, David, 2024. "Single-leader multi-follower games for the regulation of two-sided mobility-as-a-service markets," European Journal of Operational Research, Elsevier, vol. 317(3), pages 718-736.
    6. William Lefebvre & Enzo Miller, 2021. "Linear-quadratic stochastic delayed control and deep learning resolution," Papers 2102.09851, arXiv.org, revised Feb 2021.
    7. Maximilien Germain & Huy^en Pham & Xavier Warin, 2021. "A level-set approach to the control of state-constrained McKean-Vlasov equations: application to renewable energy storage and portfolio selection," Papers 2112.11059, arXiv.org, revised Nov 2022.
    8. Li-Hsien Sun, 2022. "Mean Field Games with Heterogeneous Groups: Application to Banking Systems," Journal of Optimization Theory and Applications, Springer, vol. 192(1), pages 130-167, January.
    9. R. Cambini & R. Riccardi & D. Scopelliti, 2023. "Solving linear multiplicative programs via branch-and-bound: a computational experience," Computational Management Science, Springer, vol. 20(1), pages 1-32, December.
    10. Arvind V. Shrivats & Dena Firoozi & Sebastian Jaimungal, 2022. "A mean‐field game approach to equilibrium pricing in solar renewable energy certificate markets," Mathematical Finance, Wiley Blackwell, vol. 32(3), pages 779-824, July.
    11. Masaaki Fujii & Akihiko Takahashi, 2021. "Equilibrium Price Formation with a Major Player and its Mean Field Limit," Papers 2102.10756, arXiv.org, revised Feb 2022.
    12. Alexander Kalinin & Thilo Meyer-Brandis & Frank Proske, 2024. "Stability, Uniqueness and Existence of Solutions to McKean–Vlasov Stochastic Differential Equations in Arbitrary Moments," Journal of Theoretical Probability, Springer, vol. 37(4), pages 2941-2989, November.
    13. Masaaki Fujii & Akihiko Takahashi, 2021. "A Mean Field Game Approach to Equilibrium Pricing with Market Clearing Condition," CIRJE F-Series CIRJE-F-1177, CIRJE, Faculty of Economics, University of Tokyo.
    14. Yan, Tingjin & Chiu, Mei Choi & Wong, Hoi Ying, 2023. "Portfolio liquidation with delayed information," Economic Modelling, Elsevier, vol. 126(C).
    15. José M. Alonso-Meijide & Julián Costa & Ignacio García-Jurado, 2019. "Null, Nullifying, and Necessary Agents: Parallel Characterizations of the Banzhaf and Shapley Values," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 1027-1035, March.
    16. Masaaki Fujii & Akihiko Takahashi, 2018. "Anticipated Backward SDEs with Jumps and quadratic-exponential growth drivers (Revised version of F-409)," CARF F-Series CARF-F-431, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    17. William Lefebvre & Enzo Miller, 2021. "Linear-quadratic stochastic delayed control and deep learning resolution," Post-Print hal-03145949, HAL.
    18. Daniel Villamar & Didier Aussel, 2024. "A bilevel optimization approach of energy transition in freight transport: SOS1 method and application to the Ecuadorian case," Computational Management Science, Springer, vol. 21(2), pages 1-30, December.
    19. John Cotrina & Javier Zúñiga, 2019. "Quasi-equilibrium problems with non-self constraint map," Journal of Global Optimization, Springer, vol. 75(1), pages 177-197, September.
    20. Masaaki Fujii & Akihiko Takahashi, 2021. "A Mean Field Game Approach to Equilibrium Pricing with Market Clearing Condition," CARF F-Series CARF-F-521, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:191:y:2021:i:2:d:10.1007_s10957-020-01757-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.