IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v180y2019i2d10.1007_s10957-018-1418-y.html
   My bibliography  Save this article

Numerical Solution of Fractional Optimal Control

Author

Listed:
  • Wen Li

    (Curtin University)

  • Song Wang

    (Curtin University)

  • Volker Rehbock

    (Curtin University)

Abstract

This paper presents a numerical algorithm for solving a class of nonlinear optimal control problems subject to a system of fractional differential equations. We first propose a robust second-order numerical integration scheme for the system. The objective is approximated by the trapezoidal rule. We then apply a gradient-based optimization method to the discretized problem. Formulas for calculating the gradients are derived. Computational results demonstrate that our method is able to generate accurate numerical approximations for problems with multiple states and controls. It is also robust with respect to the fractional orders of derivatives.

Suggested Citation

  • Wen Li & Song Wang & Volker Rehbock, 2019. "Numerical Solution of Fractional Optimal Control," Journal of Optimization Theory and Applications, Springer, vol. 180(2), pages 556-573, February.
  • Handle: RePEc:spr:joptap:v:180:y:2019:i:2:d:10.1007_s10957-018-1418-y
    DOI: 10.1007/s10957-018-1418-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-018-1418-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-018-1418-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Neelam Singha & Chandal Nahak, 2017. "An Efficient Approximation Technique for Solving a Class of Fractional Optimal Control Problems," Journal of Optimization Theory and Applications, Springer, vol. 174(3), pages 785-802, September.
    2. Chen, Wen & Wang, Song, 2017. "A power penalty method for a 2D fractional partial differential linear complementarity problem governing two-asset American option pricing," Applied Mathematics and Computation, Elsevier, vol. 305(C), pages 174-187.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chongyang Liu & Zhaohua Gong & Changjun Yu & Song Wang & Kok Lay Teo, 2021. "Optimal Control Computation for Nonlinear Fractional Time-Delay Systems with State Inequality Constraints," Journal of Optimization Theory and Applications, Springer, vol. 191(1), pages 83-117, October.
    2. Chongyang Liu & Changjun Yu & Zhaohua Gong & Huey Tyng Cheong & Kok Lay Teo, 2023. "Numerical Computation of Optimal Control Problems with Atangana–Baleanu Fractional Derivatives," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 798-816, May.
    3. Chongyang Liu & Zhaohua Gong & Kok Lay Teo & Song Wang, 2022. "Optimal Control of Nonlinear Fractional-Order Systems with Multiple Time-Varying Delays," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 856-876, June.
    4. Gong, Zhaohua & Liu, Chongyang & Teo, Kok Lay & Wang, Song & Wu, Yonghong, 2021. "Numerical solution of free final time fractional optimal control problems," Applied Mathematics and Computation, Elsevier, vol. 405(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kirkby, J. Lars & Nguyen, Dang H. & Nguyen, Duy, 2020. "A general continuous time Markov chain approximation for multi-asset option pricing with systems of correlated diffusions," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    2. Chen, Wen & Wang, Song, 2020. "A 2nd-order ADI finite difference method for a 2D fractional Black–Scholes equation governing European two asset option pricing," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 171(C), pages 279-293.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:180:y:2019:i:2:d:10.1007_s10957-018-1418-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.