IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v189y2021i2d10.1007_s10957-021-01840-z.html
   My bibliography  Save this article

A Decentralized Multi-objective Optimization Algorithm

Author

Listed:
  • Maude J. Blondin

    (Université de Sherbrooke)

  • Matthew Hale

    (University of Florida)

Abstract

During the past few decades, multi-agent optimization problems have drawn increased attention from the research community. When multiple objective functions are present among agents, many works optimize the sum of these objective functions. However, this formulation implies a decision regarding the relative importance of each objective: optimizing the sum is a special case of a multi-objective problem in which all objectives are prioritized equally. To enable more general prioritizations, we present a distributed optimization algorithm that explores Pareto optimal solutions for non-homogeneously weighted sums of objective functions. This exploration is performed through a new rule based on agents’ priorities that generates edge weights in agents’ communication graph. These weights determine how agents update their decision variables with information received from other agents in the network. Agents initially disagree on the priorities of objective functions, though they are driven to agree upon them as they optimize. As a result, agents still reach a common solution. The network-level weight matrix is (non-doubly) stochastic, contrasting with many works on the subject in which the network-level weight matrix is doubly-stochastic. New theoretical analyses are therefore developed to ensure convergence of the proposed algorithm. This paper provides a gradient-based optimization algorithm, proof of convergence to solutions, and convergence rates of the proposed algorithm. It is shown that agents’ initial priorities influence the convergence rate of the proposed algorithm and that these initial choices affect its long-run behavior. Numerical results performed with different numbers of agents illustrate the performance and effectiveness of the proposed algorithm.

Suggested Citation

  • Maude J. Blondin & Matthew Hale, 2021. "A Decentralized Multi-objective Optimization Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 189(2), pages 458-485, May.
  • Handle: RePEc:spr:joptap:v:189:y:2021:i:2:d:10.1007_s10957-021-01840-z
    DOI: 10.1007/s10957-021-01840-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-021-01840-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-021-01840-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Sundhar Ram & A. Nedić & V. V. Veeravalli, 2010. "Distributed Stochastic Subgradient Projection Algorithms for Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 147(3), pages 516-545, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chuanye Gu & Lin Jiang & Jueyou Li & Zhiyou Wu, 2023. "Privacy-Preserving Dual Stochastic Push-Sum Algorithm for Distributed Constrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 197(1), pages 22-50, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jueyou Li & Chuanye Gu & Zhiyou Wu & Changzhi Wu, 2017. "Distributed Optimization Methods for Nonconvex Problems with Inequality Constraints over Time-Varying Networks," Complexity, Hindawi, vol. 2017, pages 1-10, December.
    2. Woocheol Choi & Doheon Kim & Seok-Bae Yun, 2022. "Convergence Results of a Nested Decentralized Gradient Method for Non-strongly Convex Problems," Journal of Optimization Theory and Applications, Springer, vol. 195(1), pages 172-204, October.
    3. Junlong Zhu & Ping Xie & Mingchuan Zhang & Ruijuan Zheng & Ling Xing & Qingtao Wu, 2019. "Distributed Stochastic Subgradient Projection Algorithms Based on Weight-Balancing over Time-Varying Directed Graphs," Complexity, Hindawi, vol. 2019, pages 1-16, August.
    4. Bin Hu & Zhi-Hong Guan & Rui-Quan Liao & Ding-Xue Zhang & Gui-Lin Zheng, 2015. "Consensus-based distributed optimisation of multi-agent networks via a two level subgradient-proximal algorithm," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(7), pages 1307-1318, May.
    5. Haimonti Dutta, 2022. "A Consensus Algorithm for Linear Support Vector Machines," Management Science, INFORMS, vol. 68(5), pages 3703-3725, May.
    6. Wei Ni & Xiaoli Wang, 2022. "A Multi-Scale Method for Distributed Convex Optimization with Constraints," Journal of Optimization Theory and Applications, Springer, vol. 192(1), pages 379-400, January.
    7. Zhong, Yannan & Xu, Weijun & Li, Hongyi & Zhong, Weiwei, 2024. "Distributed mean reversion online portfolio strategy with stock network," European Journal of Operational Research, Elsevier, vol. 314(3), pages 1143-1158.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:189:y:2021:i:2:d:10.1007_s10957-021-01840-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.