IDEAS home Printed from https://ideas.repec.org/a/hin/complx/8030792.html
   My bibliography  Save this article

Distributed Stochastic Subgradient Projection Algorithms Based on Weight-Balancing over Time-Varying Directed Graphs

Author

Listed:
  • Junlong Zhu
  • Ping Xie
  • Mingchuan Zhang
  • Ruijuan Zheng
  • Ling Xing
  • Qingtao Wu

Abstract

We consider a distributed constrained optimization problem over graphs, where cost function of each agent is private. Moreover, we assume that the graphs are time-varying and directed. In order to address such problem, a fully decentralized stochastic subgradient projection algorithm is proposed over time-varying directed graphs. However, since the graphs are directed, the weight matrix may not be a doubly stochastic matrix. Therefore, we overcome this difficulty by using weight-balancing technique. By choosing appropriate step-sizes, we show that iterations of all agents asymptotically converge to some optimal solutions. Further, by our analysis, convergence rate of our proposed algorithm is under local strong convexity, where is the number of iterations. In addition, under local convexity, we prove that our proposed algorithm can converge with rate . In addition, we verify the theoretical results through simulations.

Suggested Citation

  • Junlong Zhu & Ping Xie & Mingchuan Zhang & Ruijuan Zheng & Ling Xing & Qingtao Wu, 2019. "Distributed Stochastic Subgradient Projection Algorithms Based on Weight-Balancing over Time-Varying Directed Graphs," Complexity, Hindawi, vol. 2019, pages 1-16, August.
  • Handle: RePEc:hin:complx:8030792
    DOI: 10.1155/2019/8030792
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/8030792.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/8030792.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/8030792?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. S. Sundhar Ram & A. Nedić & V. V. Veeravalli, 2010. "Distributed Stochastic Subgradient Projection Algorithms for Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 147(3), pages 516-545, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maude J. Blondin & Matthew Hale, 2021. "A Decentralized Multi-objective Optimization Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 189(2), pages 458-485, May.
    2. Bin Hu & Zhi-Hong Guan & Rui-Quan Liao & Ding-Xue Zhang & Gui-Lin Zheng, 2015. "Consensus-based distributed optimisation of multi-agent networks via a two level subgradient-proximal algorithm," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(7), pages 1307-1318, May.
    3. Haimonti Dutta, 2022. "A Consensus Algorithm for Linear Support Vector Machines," Management Science, INFORMS, vol. 68(5), pages 3703-3725, May.
    4. Wei Ni & Xiaoli Wang, 2022. "A Multi-Scale Method for Distributed Convex Optimization with Constraints," Journal of Optimization Theory and Applications, Springer, vol. 192(1), pages 379-400, January.
    5. Jueyou Li & Chuanye Gu & Zhiyou Wu & Changzhi Wu, 2017. "Distributed Optimization Methods for Nonconvex Problems with Inequality Constraints over Time-Varying Networks," Complexity, Hindawi, vol. 2017, pages 1-10, December.
    6. Zhong, Yannan & Xu, Weijun & Li, Hongyi & Zhong, Weiwei, 2024. "Distributed mean reversion online portfolio strategy with stock network," European Journal of Operational Research, Elsevier, vol. 314(3), pages 1143-1158.
    7. Woocheol Choi & Doheon Kim & Seok-Bae Yun, 2022. "Convergence Results of a Nested Decentralized Gradient Method for Non-strongly Convex Problems," Journal of Optimization Theory and Applications, Springer, vol. 195(1), pages 172-204, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:8030792. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.