IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v187y2020i2d10.1007_s10957-020-01764-0.html
   My bibliography  Save this article

An Existence Result for Quasi-equilibrium Problems via Ekeland’s Variational Principle

Author

Listed:
  • John Cotrina

    (Universidad del Pacífico)

  • Michel Théra

    (Université de Limoges
    Federation University Australia)

  • Javier Zúñiga

    (Universidad del Pacífico)

Abstract

This paper deals with the existence of solutions to equilibrium and quasi-equilibrium problems without any convexity assumption. Coverage includes some equivalences to the Ekeland variational principle for bifunctions and basic facts about transfer lower continuity. An application is given to systems of quasi-equilibrium problems.

Suggested Citation

  • John Cotrina & Michel Théra & Javier Zúñiga, 2020. "An Existence Result for Quasi-equilibrium Problems via Ekeland’s Variational Principle," Journal of Optimization Theory and Applications, Springer, vol. 187(2), pages 336-355, November.
  • Handle: RePEc:spr:joptap:v:187:y:2020:i:2:d:10.1007_s10957-020-01764-0
    DOI: 10.1007/s10957-020-01764-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-020-01764-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-020-01764-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Massimiliano Giuli, 2017. "Cyclically monotone equilibrium problems and Ekeland’s principle," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 231-242, November.
    2. M. Castellani & M. Giuli, 2010. "On Equivalent Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 147(1), pages 157-168, October.
    3. D. Aussel & J. Cotrina, 2013. "Quasimonotone Quasivariational Inequalities: Existence Results and Applications," Journal of Optimization Theory and Applications, Springer, vol. 158(3), pages 637-652, September.
    4. Marco Castellani & Massimiliano Giuli & Massimo Pappalardo, 2018. "A Ky Fan Minimax Inequality for Quasiequilibria on Finite-Dimensional Spaces," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 53-64, October.
    5. Tian, Guoqiang & Zhou, Jianxin, 1995. "Transfer continuities, generalizations of the Weierstrass and maximum theorems: A full characterization," Journal of Mathematical Economics, Elsevier, vol. 24(3), pages 281-303.
    6. M. Bianchi & S. Schaible, 2000. "An Extension of Pseudolinear Functions and Variational Inequality Problems," Journal of Optimization Theory and Applications, Springer, vol. 104(1), pages 59-71, January.
    7. M. Castellani & M. Giuli, 2013. "Refinements of existence results for relaxed quasimonotone equilibrium problems," Journal of Global Optimization, Springer, vol. 57(4), pages 1213-1227, December.
    8. M. Alizadeh & M. Bianchi & N. Hadjisavvas & R. Pini, 2014. "On cyclic and $$n$$ n -cyclic monotonicity of bifunctions," Journal of Global Optimization, Springer, vol. 60(4), pages 599-616, December.
    9. John Cotrina & Javier Zúñiga, 2019. "Quasi-equilibrium problems with non-self constraint map," Journal of Global Optimization, Springer, vol. 75(1), pages 177-197, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John Cotrina & Javier Zúñiga, 2019. "Quasi-equilibrium problems with non-self constraint map," Journal of Global Optimization, Springer, vol. 75(1), pages 177-197, September.
    2. John Cotrina & Anton Svensson, 2021. "The finite intersection property for equilibrium problems," Journal of Global Optimization, Springer, vol. 79(4), pages 941-957, April.
    3. M. Castellani & M. Giuli, 2019. "A coercivity condition for nonmonotone quasiequilibria on finite-dimensional spaces," Journal of Global Optimization, Springer, vol. 75(1), pages 163-176, September.
    4. Orestes Bueno & John Cotrina, 2021. "Existence of Projected Solutions for Generalized Nash Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 191(1), pages 344-362, October.
    5. Mircea Balaj, 2022. "Scalar and vector equilibrium problems with pairs of bifunctions," Journal of Global Optimization, Springer, vol. 84(3), pages 739-753, November.
    6. Duggan, John, 2011. "General conditions for the existence of maximal elements via the uncovered set," Journal of Mathematical Economics, Elsevier, vol. 47(6), pages 755-759.
    7. John Cotrina & Javier Zúñiga, 2018. "Time-Dependent Generalized Nash Equilibrium Problem," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 1054-1064, December.
    8. Subiza, Begona & Peris, Josep E., 1997. "Numerical representation for lower quasi-continuous preferences," Mathematical Social Sciences, Elsevier, vol. 33(2), pages 149-156, April.
    9. Prokopovych, Pavlo & Yannelis, Nicholas C., 2017. "On strategic complementarities in discontinuous games with totally ordered strategies," Journal of Mathematical Economics, Elsevier, vol. 70(C), pages 147-153.
    10. Federico Quartieri, 2022. "On the Existence of Greatest Elements and Maximizers," Journal of Optimization Theory and Applications, Springer, vol. 195(2), pages 375-389, November.
    11. Rabia Nessah & Guoqiang Tian, 2008. "The Existence of Equilibria in Discontinuous and Nonconvex Games," Working Papers 2008-ECO-14, IESEG School of Management, revised Mar 2010.
    12. Rabia Nessah & Guoqiang Tian, 2016. "On the existence of Nash equilibrium in discontinuous games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 515-540, March.
    13. Alcantud, Jose C.R., 2006. "Maximality with or without binariness: Transfer-type characterizations," Mathematical Social Sciences, Elsevier, vol. 51(2), pages 182-191, March.
    14. Scalzo, Vincenzo, 2010. "Pareto efficient Nash equilibria in discontinuous games," Economics Letters, Elsevier, vol. 107(3), pages 364-365, June.
    15. J. X. Cruz Neto & F. M. O. Jacinto & P. A. Soares & J. C. O. Souza, 2018. "On maximal monotonicity of bifunctions on Hadamard manifolds," Journal of Global Optimization, Springer, vol. 72(3), pages 591-601, November.
    16. Cholamjiak, Watcharaporn & Dutta, Hemen & Yambangwai, Damrongsak, 2021. "Image restorations using an inertial parallel hybrid algorithm with Armijo linesearch for nonmonotone equilibrium problems," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    17. Tian, Guoqiang, 2015. "On the existence of equilibria in games with arbitrary strategy spaces and preferences," Journal of Mathematical Economics, Elsevier, vol. 60(C), pages 9-16.
    18. M. Bianchi & G. Kassay & R. Pini, 2022. "Brezis pseudomonotone bifunctions and quasi equilibrium problems via penalization," Journal of Global Optimization, Springer, vol. 82(3), pages 483-498, March.
    19. Francisco Facchinei & Christian Kanzow, 2010. "Generalized Nash Equilibrium Problems," Annals of Operations Research, Springer, vol. 175(1), pages 177-211, March.
    20. Vsevolod I. Ivanov, 2013. "Optimality Conditions and Characterizations of the Solution Sets in Generalized Convex Problems and Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 158(1), pages 65-84, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:187:y:2020:i:2:d:10.1007_s10957-020-01764-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.