IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v184y2020i3d10.1007_s10957-019-01627-3.html
   My bibliography  Save this article

Linearized Methods for Tensor Complementarity Problems

Author

Listed:
  • Hong-Bo Guan

    (South China Normal University
    Hunan Institute of Technology)

  • Dong-Hui Li

    (South China Normal University)

Abstract

In this paper, we first propose a linearized method for solving the tensor complementarity problem. The subproblems of the method can be solved by solving linear complementarity problems with a constant matrix. We show that if the initial point is appropriately chosen, then the generated sequence of iterates converges to a solution of the problem monotonically. We then propose a lower-dimensional equation method and establish its monotone convergence. The subproblems of the method are lower-dimensional systems of linear equations. At last, we do numerical experiments to test the proposed methods. The results show the efficiency of the proposed methods.

Suggested Citation

  • Hong-Bo Guan & Dong-Hui Li, 2020. "Linearized Methods for Tensor Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 972-987, March.
  • Handle: RePEc:spr:joptap:v:184:y:2020:i:3:d:10.1007_s10957-019-01627-3
    DOI: 10.1007/s10957-019-01627-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-019-01627-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-019-01627-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shui-Lian Xie & Dong-Hui Li & Hong-Ru Xu, 2017. "An Iterative Method for Finding the Least Solution to the Tensor Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 175(1), pages 119-136, October.
    2. Zheng-Hai Huang & Liqun Qi, 2017. "Formulating an n-person noncooperative game as a tensor complementarity problem," Computational Optimization and Applications, Springer, vol. 66(3), pages 557-576, April.
    3. Yisheng Song & Liqun Qi, 2016. "Tensor Complementarity Problem and Semi-positive Tensors," Journal of Optimization Theory and Applications, Springer, vol. 169(3), pages 1069-1078, June.
    4. Xue-Li Bai & Zheng-Hai Huang & Yong Wang, 2016. "Global Uniqueness and Solvability for Tensor Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 170(1), pages 72-84, July.
    5. Maolin Che & Liqun Qi & Yimin Wei, 2016. "Positive-Definite Tensors to Nonlinear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 168(2), pages 475-487, February.
    6. Zheng-Hai Huang & Liqun Qi, 2019. "Tensor Complementarity Problems—Part III: Applications," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 771-791, December.
    7. Shouqiang Du & Liping Zhang, 2019. "A mixed integer programming approach to the tensor complementarity problem," Journal of Global Optimization, Springer, vol. 73(4), pages 789-800, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ping-Fan Dai & Shi-Liang Wu, 2022. "The GUS-Property and Modulus-Based Methods for Tensor Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 195(3), pages 976-1006, December.
    2. Zheng-Hai Huang & Yu-Fan Li & Yong Wang, 2023. "A fixed point iterative method for tensor complementarity problems with the implicit Z-tensors," Journal of Global Optimization, Springer, vol. 86(2), pages 495-520, June.
    3. Xuezhong Wang & Maolin Che & Yimin Wei, 2022. "Randomized Kaczmarz methods for tensor complementarity problems," Computational Optimization and Applications, Springer, vol. 82(3), pages 595-615, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng-Hai Huang & Yu-Fan Li & Yong Wang, 2023. "A fixed point iterative method for tensor complementarity problems with the implicit Z-tensors," Journal of Global Optimization, Springer, vol. 86(2), pages 495-520, June.
    2. Xuezhong Wang & Maolin Che & Yimin Wei, 2022. "Randomized Kaczmarz methods for tensor complementarity problems," Computational Optimization and Applications, Springer, vol. 82(3), pages 595-615, July.
    3. Shouqiang Du & Liyuan Cui & Yuanyuan Chen & Yimin Wei, 2022. "Stochastic Tensor Complementarity Problem with Discrete Distribution," Journal of Optimization Theory and Applications, Springer, vol. 192(3), pages 912-929, March.
    4. Shouqiang Du & Maolin Che & Yimin Wei, 2020. "Stochastic structured tensors to stochastic complementarity problems," Computational Optimization and Applications, Springer, vol. 75(3), pages 649-668, April.
    5. Ping-Fan Dai & Shi-Liang Wu, 2022. "The GUS-Property and Modulus-Based Methods for Tensor Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 195(3), pages 976-1006, December.
    6. Xue-Li Bai & Zheng-Hai Huang & Xia Li, 2019. "Stability of Solutions and Continuity of Solution Maps of Tensor Complementarity Problems," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(02), pages 1-19, April.
    7. Zhenyu Ming & Liping Zhang & Liqun Qi, 2020. "Expected residual minimization method for monotone stochastic tensor complementarity problem," Computational Optimization and Applications, Springer, vol. 77(3), pages 871-896, December.
    8. Shouqiang Du & Weiyang Ding & Yimin Wei, 2021. "Acceptable Solutions and Backward Errors for Tensor Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 188(1), pages 260-276, January.
    9. Meng-Meng Zheng & Zheng-Hai Huang & Xiao-Xiao Ma, 2020. "Nonemptiness and Compactness of Solution Sets to Generalized Polynomial Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 185(1), pages 80-98, April.
    10. Lu-Bin Cui & Yu-Dong Fan & Yi-Sheng Song & Shi-Liang Wu, 2022. "The Existence and Uniqueness of Solution for Tensor Complementarity Problem and Related Systems," Journal of Optimization Theory and Applications, Springer, vol. 192(1), pages 321-334, January.
    11. Shouqiang Du & Liping Zhang, 2019. "A mixed integer programming approach to the tensor complementarity problem," Journal of Global Optimization, Springer, vol. 73(4), pages 789-800, April.
    12. Jie Wang & Shenglong Hu & Zheng-Hai Huang, 2018. "Solution Sets of Quadratic Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 176(1), pages 120-136, January.
    13. Shenglong Hu & Jie Wang & Zheng-Hai Huang, 2018. "Error Bounds for the Solution Sets of Quadratic Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 983-1000, December.
    14. Haibin Chen & Zheng-Hai Huang & Liqun Qi, 2017. "Copositivity Detection of Tensors: Theory and Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 174(3), pages 746-761, September.
    15. Liqun Qi & Zheng-Hai Huang, 2019. "Tensor Complementarity Problems—Part II: Solution Methods," Journal of Optimization Theory and Applications, Springer, vol. 183(2), pages 365-385, November.
    16. Haibin Chen & Zheng-Hai Huang & Liqun Qi, 2018. "Copositive tensor detection and its applications in physics and hypergraphs," Computational Optimization and Applications, Springer, vol. 69(1), pages 133-158, January.
    17. Yong Wang & Zheng-Hai Huang & Liqun Qi, 2018. "Global Uniqueness and Solvability of Tensor Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 177(1), pages 137-152, April.
    18. Vu Trung Hieu, 2019. "On the R0-Tensors and the Solution Map of Tensor Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 181(1), pages 163-183, April.
    19. Yisheng Song & Xudong Li, 2022. "Copositivity for a Class of Fourth-Order Symmetric Tensors Given by Scalar Dark Matter," Journal of Optimization Theory and Applications, Springer, vol. 195(1), pages 334-346, October.
    20. Tong-tong Shang & Guo-ji Tang, 2023. "Structured tensor tuples to polynomial complementarity problems," Journal of Global Optimization, Springer, vol. 86(4), pages 867-883, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:184:y:2020:i:3:d:10.1007_s10957-019-01627-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.