IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v183y2019i3d10.1007_s10957-019-01585-w.html
   My bibliography  Save this article

Adaptive Conditional Gradient Method

Author

Listed:
  • Z. R. Gabidullina

    (Kazan Federal University)

Abstract

We present a novel fully adaptive conditional gradient method with the step length regulation for solving pseudo-convex constrained optimization problems. We propose some deterministic rules of the step length regulation in a normalized direction. These rules guarantee to find the step length by utilizing the finite procedures and provide the strict relaxation of the objective function at each iteration. We prove that the sequence of the function values for the iterates generated by the algorithm converges globally to the objective function optimal value with sublinear rate.

Suggested Citation

  • Z. R. Gabidullina, 2019. "Adaptive Conditional Gradient Method," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 1077-1098, December.
  • Handle: RePEc:spr:joptap:v:183:y:2019:i:3:d:10.1007_s10957-019-01585-w
    DOI: 10.1007/s10957-019-01585-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-019-01585-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-019-01585-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yurii Nesterov, 2018. "The Primal-Dual Model of an Objective Function," Springer Optimization and Its Applications, in: Lectures on Convex Optimization, edition 2, chapter 0, pages 423-487, Springer.
    2. Yurii Nesterov, 2018. "Complexity bounds for primal-dual methods minimizing the model of objective function," LIDAM Reprints CORE 2992, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masoud Ahookhosh, 2019. "Accelerated first-order methods for large-scale convex optimization: nearly optimal complexity under strong convexity," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(3), pages 319-353, June.
    2. Ya-Feng Liu & Xin Liu & Shiqian Ma, 2019. "On the Nonergodic Convergence Rate of an Inexact Augmented Lagrangian Framework for Composite Convex Programming," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 632-650, May.
    3. Doikov, Nikita & Nesterov, Yurii, 2021. "Optimization Methods for Fully Composite Problems," LIDAM Discussion Papers CORE 2021001, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Doikov, Nikita & Nesterov, Yurii, 2020. "Affine-invariant contracting-point methods for Convex Optimization," LIDAM Discussion Papers CORE 2020029, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:183:y:2019:i:3:d:10.1007_s10957-019-01585-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.