IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-3-319-91578-4_6.html
   My bibliography  Save this book chapter

The Primal-Dual Model of an Objective Function

In: Lectures on Convex Optimization

Author

Listed:
  • Yurii Nesterov

    (Catholic University of Louvain)

Abstract

In the previous chapters, we have proved that in the Black-Box framework the non-smooth optimization problems are much more difficult than the smooth ones. However, very often we know the explicit structure of the functional components. In this chapter we show how this knowledge can be used to accelerate the minimization methods and to extract a useful information about the dual counterpart of the problem. The main acceleration idea is based on the approximation of a nondifferentiable function by a differentiable one. We develop a technique for creating computable smoothed versions of non-differentiable functions and minimize them by Fast Gradient Methods. The number of iterations of the resulting methods is proportional to the square root of the number of iterations of the standard subgradient scheme. At the same time, the complexity of each iteration does not change. This technique can be used either in the primal form, or in the symmetric primal-dual form. We include in this chapter an example of application of this approach to the problem of Semidefinite Optimization. The chapter is concluded by analysis of performance of the Conditional Gradient method, which is based only on solving at each iteration an auxiliary problem of minimization of a linear function. We show that this method can also reconstruct the primal-dual solution of the problem. A similar idea is used in the second-order Trust Region Method with contraction, the first method of this type with provable global worst-case performance guarantees.

Suggested Citation

  • Yurii Nesterov, 2018. "The Primal-Dual Model of an Objective Function," Springer Optimization and Its Applications, in: Lectures on Convex Optimization, edition 2, chapter 0, pages 423-487, Springer.
  • Handle: RePEc:spr:spochp:978-3-319-91578-4_6
    DOI: 10.1007/978-3-319-91578-4_6
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Doikov, Nikita & Nesterov, Yurii, 2020. "Affine-invariant contracting-point methods for Convex Optimization," LIDAM Discussion Papers CORE 2020029, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Z. R. Gabidullina, 2019. "Adaptive Conditional Gradient Method," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 1077-1098, December.
    3. Doikov, Nikita & Nesterov, Yurii, 2021. "Optimization Methods for Fully Composite Problems," LIDAM Discussion Papers CORE 2021001, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Ya-Feng Liu & Xin Liu & Shiqian Ma, 2019. "On the Nonergodic Convergence Rate of an Inexact Augmented Lagrangian Framework for Composite Convex Programming," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 632-650, May.
    5. Masoud Ahookhosh, 2019. "Accelerated first-order methods for large-scale convex optimization: nearly optimal complexity under strong convexity," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(3), pages 319-353, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-3-319-91578-4_6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.