IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v201y2010i1p11-22.html
   My bibliography  Save this article

Optimality conditions via scalarization for a new [epsilon]-efficiency concept in vector optimization problems

Author

Listed:
  • Gutiérrez, C.
  • Jiménez, B.
  • Novo, V.

Abstract

In this work, necessary and sufficient conditions for approximate solutions of vector optimization problems are obtained via scalarization, i.e., by considering approximate solutions of associated scalar optimization problems. These conditions are proved through a new [epsilon]-efficiency concept and two very general assumptions on the scalarization that extend the usual order representing and monotonicity properties. Moreover, neither solidness hypothesis on the order cone nor monotonicity property on the scalarization are assumed.

Suggested Citation

  • Gutiérrez, C. & Jiménez, B. & Novo, V., 2010. "Optimality conditions via scalarization for a new [epsilon]-efficiency concept in vector optimization problems," European Journal of Operational Research, Elsevier, vol. 201(1), pages 11-22, February.
  • Handle: RePEc:eee:ejores:v:201:y:2010:i:1:p:11-22
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(09)00069-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. Gutiérrez & B. Jiménez & V. Novo, 2006. "On Approximate Efficiency in Multiobjective Programming," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 64(1), pages 165-185, August.
    2. E. Miglierina & E. Molho, 2002. "Scalarization and Stability in Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 114(3), pages 657-670, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thai Doan Chuong, 2022. "Approximate solutions in nonsmooth and nonconvex cone constrained vector optimization," Annals of Operations Research, Springer, vol. 311(2), pages 997-1015, April.
    2. Fabián Flores-Bazán & Fernando Flores-Bazán & Sigifredo Laengle, 2015. "Characterizing Efficiency on Infinite-dimensional Commodity Spaces with Ordering Cones Having Possibly Empty Interior," Journal of Optimization Theory and Applications, Springer, vol. 164(2), pages 455-478, February.
    3. M. Chicco & F. Mignanego & L. Pusillo & S. Tijs, 2011. "Vector Optimization Problems via Improvement Sets," Journal of Optimization Theory and Applications, Springer, vol. 150(3), pages 516-529, September.
    4. Meenakshi Gupta & Manjari Srivastava, 2020. "Approximate Solutions and Levitin–Polyak Well-Posedness for Set Optimization Using Weak Efficiency," Journal of Optimization Theory and Applications, Springer, vol. 186(1), pages 191-208, July.
    5. Fabián Flores-Bazán & Elvira Hernández, 2013. "Optimality conditions for a unified vector optimization problem with not necessarily preordering relations," Journal of Global Optimization, Springer, vol. 56(2), pages 299-315, June.
    6. Maurizio Chicco & Anna Rossi, 2015. "Existence of Optimal Points Via Improvement Sets," Journal of Optimization Theory and Applications, Springer, vol. 167(2), pages 487-501, November.
    7. C. S. Lalitha & Prashanto Chatterjee, 2012. "Stability and Scalarization of Weak Efficient, Efficient and Henig Proper Efficient Sets Using Generalized Quasiconvexities," Journal of Optimization Theory and Applications, Springer, vol. 155(3), pages 941-961, December.
    8. C. S. Lalitha & Prashanto Chatterjee, 2015. "Stability and Scalarization in Vector Optimization Using Improvement Sets," Journal of Optimization Theory and Applications, Springer, vol. 166(3), pages 825-843, September.
    9. C. Gutiérrez & B. Jiménez & V. Novo, 2015. "Optimality Conditions for Quasi-Solutions of Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 167(3), pages 796-820, December.
    10. Gutiérrez, C. & Jiménez, B. & Novo, V., 2012. "Improvement sets and vector optimization," European Journal of Operational Research, Elsevier, vol. 223(2), pages 304-311.
    11. Villacorta, Kely D.V. & Oliveira, P. Roberto, 2011. "An interior proximal method in vector optimization," European Journal of Operational Research, Elsevier, vol. 214(3), pages 485-492, November.
    12. C. Gutiérrez & B. Jiménez & V. Novo, 2011. "A generic approach to approximate efficiency and applications to vector optimization with set-valued maps," Journal of Global Optimization, Springer, vol. 49(2), pages 313-342, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Radu Boţ & Sorin-Mihai Grad & Gert Wanka, 2007. "A general approach for studying duality in multiobjective optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 65(3), pages 417-444, June.
    2. C. S. Lalitha & Prashanto Chatterjee, 2012. "Stability for Properly Quasiconvex Vector Optimization Problem," Journal of Optimization Theory and Applications, Springer, vol. 155(2), pages 492-506, November.
    3. Khushboo & C. S. Lalitha, 2018. "Scalarizations for a unified vector optimization problem based on order representing and order preserving properties," Journal of Global Optimization, Springer, vol. 70(4), pages 903-916, April.
    4. S. W. Xiang & W. S. Yin, 2007. "Stability Results for Efficient Solutions of Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 134(3), pages 385-398, September.
    5. L. P. Hai & L. Huerga & P. Q. Khanh & V. Novo, 2019. "Variants of the Ekeland variational principle for approximate proper solutions of vector equilibrium problems," Journal of Global Optimization, Springer, vol. 74(2), pages 361-382, June.
    6. Rocca Matteo & Papalia Melania, 2008. "Well-posedness in vector optimization and scalarization results," Economics and Quantitative Methods qf0807, Department of Economics, University of Insubria.
    7. S. J. Li & Y. D. Xu & S. K. Zhu, 2012. "Nonlinear Separation Approach to Constrained Extremum Problems," Journal of Optimization Theory and Applications, Springer, vol. 154(3), pages 842-856, September.
    8. Shiva Kapoor & C. S. Lalitha, 2019. "Stability in unified semi-infinite vector optimization," Journal of Global Optimization, Springer, vol. 74(2), pages 383-399, June.
    9. Y. D. Xu & S. J. Li, 2013. "Optimality Conditions for Generalized Ky Fan Quasi-Inequalities with Applications," Journal of Optimization Theory and Applications, Springer, vol. 157(3), pages 663-684, June.
    10. Gutiérrez, C. & Jiménez, B. & Novo, V., 2012. "Improvement sets and vector optimization," European Journal of Operational Research, Elsevier, vol. 223(2), pages 304-311.
    11. B. Jiménez & V. Novo & A. Vílchez, 2020. "Characterization of set relations through extensions of the oriented distance," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(1), pages 89-115, February.
    12. C. Gutiérrez & B. Jiménez & V. Novo, 2012. "Equivalent ε-efficiency notions in vector optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 437-455, July.
    13. C. Gutiérrez & L. Huerga & V. Novo & C. Tammer, 2016. "Duality related to approximate proper solutions of vector optimization problems," Journal of Global Optimization, Springer, vol. 64(1), pages 117-139, January.
    14. Miglierina Enrico & Molho Elena, 2003. "Convergence of the minimal sets under convexity in vector optimization," Economics and Quantitative Methods qf0302, Department of Economics, University of Insubria.
    15. Ginchev Ivan & Guerraggio Angelo & Rocca Matteo, 2004. "Isolated minimizers, proper efficiency and stability for C0,1 constrained vector optimization problems," Economics and Quantitative Methods qf0404, Department of Economics, University of Insubria.
    16. Ying Gao & Xin-Min Yang, 2019. "Properties of the nonlinear scalar functional and its applications to vector optimization problems," Journal of Global Optimization, Springer, vol. 73(4), pages 869-889, April.
    17. C. Gutiérrez & B. Jiménez & V. Novo, 2011. "A generic approach to approximate efficiency and applications to vector optimization with set-valued maps," Journal of Global Optimization, Springer, vol. 49(2), pages 313-342, February.
    18. C. S. Lalitha & Prashanto Chatterjee, 2012. "Stability and Scalarization of Weak Efficient, Efficient and Henig Proper Efficient Sets Using Generalized Quasiconvexities," Journal of Optimization Theory and Applications, Springer, vol. 155(3), pages 941-961, December.
    19. A. Engau & M. M. Wiecek, 2007. "Cone Characterizations of Approximate Solutions in Real Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 134(3), pages 499-513, September.
    20. Onetti Alberto & Verma Sameer, 2008. "Licensing and Business Models," Economics and Quantitative Methods qf0806, Department of Economics, University of Insubria.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:201:y:2010:i:1:p:11-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.