IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v181y2019i2d10.1007_s10957-018-1428-9.html
   My bibliography  Save this article

Convergence of the Exponentiated Gradient Method with Armijo Line Search

Author

Listed:
  • Yen-Huan Li

    (École Polytechnique Fédérale de Lausanne
    National Taiwan University)

  • Volkan Cevher

    (École Polytechnique Fédérale de Lausanne)

Abstract

Consider the problem of minimizing a convex differentiable function on the probability simplex, spectrahedron, or set of quantum density matrices. We prove that the exponentiated gradient method with Armijo line search always converges to the optimum, if the sequence of the iterates possesses a strictly positive limit point (element-wise for the vector case, and with respect to the Löwner partial ordering for the matrix case). To the best of our knowledge, this is the first convergence result for a mirror descent-type method that only requires differentiability. The proof exploits self-concordant likeness of the log-partition function, which is of independent interest.

Suggested Citation

  • Yen-Huan Li & Volkan Cevher, 2019. "Convergence of the Exponentiated Gradient Method with Armijo Line Search," Journal of Optimization Theory and Applications, Springer, vol. 181(2), pages 588-607, May.
  • Handle: RePEc:spr:joptap:v:181:y:2019:i:2:d:10.1007_s10957-018-1428-9
    DOI: 10.1007/s10957-018-1428-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-018-1428-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-018-1428-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Charles Byrne & Yair Censor, 2001. "Proximity Function Minimization Using Multiple Bregman Projections, with Applications to Split Feasibility and Kullback–Leibler Distance Minimization," Annals of Operations Research, Springer, vol. 105(1), pages 77-98, July.
    2. A. Auslender & M. Teboulle, 2004. "Interior Gradient and Epsilon-Subgradient Descent Methods for Constrained Convex Minimization," Mathematics of Operations Research, INFORMS, vol. 29(1), pages 1-26, February.
    3. Heinz H. Bauschke & Jérôme Bolte & Marc Teboulle, 2017. "A Descent Lemma Beyond Lipschitz Gradient Continuity: First-Order Methods Revisited and Applications," Mathematics of Operations Research, INFORMS, vol. 42(2), pages 330-348, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrzej Cichocki & Sergio Cruces & Auxiliadora Sarmiento & Toshihisa Tanaka, 2024. "Generalized Exponentiated Gradient Algorithms and Their Application to On-Line Portfolio Selection," Papers 2406.00655, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Regina S. Burachik & Yaohua Hu & Xiaoqi Yang, 2022. "Interior quasi-subgradient method with non-Euclidean distances for constrained quasi-convex optimization problems in hilbert spaces," Journal of Global Optimization, Springer, vol. 83(2), pages 249-271, June.
    2. Emanuel Laude & Peter Ochs & Daniel Cremers, 2020. "Bregman Proximal Mappings and Bregman–Moreau Envelopes Under Relative Prox-Regularity," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 724-761, March.
    3. Shota Takahashi & Mituhiro Fukuda & Mirai Tanaka, 2022. "New Bregman proximal type algorithms for solving DC optimization problems," Computational Optimization and Applications, Springer, vol. 83(3), pages 893-931, December.
    4. Zamani, Moslem & Abbaszadehpeivasti, Hadi & de Klerk, Etienne, 2024. "The exact worst-case convergence rate of the alternating direction method of multipliers," Other publications TiSEM f30ae9e6-ed19-423f-bd1e-0, Tilburg University, School of Economics and Management.
    5. HyungSeon Oh, 2021. "Distributed optimal power flow," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-27, June.
    6. Zehui Jia & Jieru Huang & Xingju Cai, 2021. "Proximal-like incremental aggregated gradient method with Bregman distance in weakly convex optimization problems," Journal of Global Optimization, Springer, vol. 80(4), pages 841-864, August.
    7. Masoud Ahookhosh, 2019. "Accelerated first-order methods for large-scale convex optimization: nearly optimal complexity under strong convexity," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(3), pages 319-353, June.
    8. Xianfu Wang & Xinmin Yang, 2015. "On the Existence of Minimizers of Proximity Functions for Split Feasibility Problems," Journal of Optimization Theory and Applications, Springer, vol. 166(3), pages 861-888, September.
    9. Fan Wu & Wei Bian, 2023. "Smoothing Accelerated Proximal Gradient Method with Fast Convergence Rate for Nonsmooth Convex Optimization Beyond Differentiability," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 539-572, May.
    10. S. Bonettini & M. Prato & S. Rebegoldi, 2018. "A block coordinate variable metric linesearch based proximal gradient method," Computational Optimization and Applications, Springer, vol. 71(1), pages 5-52, September.
    11. Peter Ochs & Jalal Fadili & Thomas Brox, 2019. "Non-smooth Non-convex Bregman Minimization: Unification and New Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 181(1), pages 244-278, April.
    12. Masoud Ahookhosh & Le Thi Khanh Hien & Nicolas Gillis & Panagiotis Patrinos, 2021. "A Block Inertial Bregman Proximal Algorithm for Nonsmooth Nonconvex Problems with Application to Symmetric Nonnegative Matrix Tri-Factorization," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 234-258, July.
    13. Min Li & Xiaoming Yuan, 2015. "A Strictly Contractive Peaceman-Rachford Splitting Method with Logarithmic-Quadratic Proximal Regularization for Convex Programming," Mathematics of Operations Research, INFORMS, vol. 40(4), pages 842-858, October.
    14. Yin Liu & Sam Davanloo Tajbakhsh, 2023. "Stochastic Composition Optimization of Functions Without Lipschitz Continuous Gradient," Journal of Optimization Theory and Applications, Springer, vol. 198(1), pages 239-289, July.
    15. Hédy Attouch & Jérôme Bolte & Patrick Redont & Antoine Soubeyran, 2010. "Proximal Alternating Minimization and Projection Methods for Nonconvex Problems: An Approach Based on the Kurdyka-Łojasiewicz Inequality," Mathematics of Operations Research, INFORMS, vol. 35(2), pages 438-457, May.
    16. Regina S. Burachik & Minh N. Dao & Scott B. Lindstrom, 2021. "Generalized Bregman Envelopes and Proximity Operators," Journal of Optimization Theory and Applications, Springer, vol. 190(3), pages 744-778, September.
    17. Radu-Alexandru Dragomir & Alexandre d’Aspremont & Jérôme Bolte, 2021. "Quartic First-Order Methods for Low-Rank Minimization," Journal of Optimization Theory and Applications, Springer, vol. 189(2), pages 341-363, May.
    18. Wang Chen & Xinmin Yang & Yong Zhao, 2023. "Conditional gradient method for vector optimization," Computational Optimization and Applications, Springer, vol. 85(3), pages 857-896, July.
    19. Vincenzo Bonifaci, 2021. "A Laplacian approach to $$\ell _1$$ ℓ 1 -norm minimization," Computational Optimization and Applications, Springer, vol. 79(2), pages 441-469, June.
    20. Masoud Ahookhosh & Le Thi Khanh Hien & Nicolas Gillis & Panagiotis Patrinos, 2021. "Multi-block Bregman proximal alternating linearized minimization and its application to orthogonal nonnegative matrix factorization," Computational Optimization and Applications, Springer, vol. 79(3), pages 681-715, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:181:y:2019:i:2:d:10.1007_s10957-018-1428-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.