IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v181y2019i1d10.1007_s10957-018-1432-0.html
   My bibliography  Save this article

Linear Programming Formulation of Long-Run Average Optimal Control Problem

Author

Listed:
  • Vivek S. Borkar

    (Indian Institute of Technology Bombay)

  • Vladimir Gaitsgory

    (Macquarie University)

Abstract

We formulate and study the infinite-dimensional linear programming problem associated with the deterministic long-run average cost control problem. Along with its dual, it allows one to characterize the optimal value of this control problem. The novelty of our approach is that we focus on the general case wherein the optimal value may depend on the initial condition of the system.

Suggested Citation

  • Vivek S. Borkar & Vladimir Gaitsgory, 2019. "Linear Programming Formulation of Long-Run Average Optimal Control Problem," Journal of Optimization Theory and Applications, Springer, vol. 181(1), pages 101-125, April.
  • Handle: RePEc:spr:joptap:v:181:y:2019:i:1:d:10.1007_s10957-018-1432-0
    DOI: 10.1007/s10957-018-1432-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-018-1432-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-018-1432-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ehud Lehrer & Sylvain Sorin, 1992. "A Uniform Tauberian Theorem in Dynamic Programming," Mathematics of Operations Research, INFORMS, vol. 17(2), pages 303-307, May.
    2. Alexander J. Zaslavski, 2014. "Turnpike Phenomenon and Infinite Horizon Optimal Control," Springer Optimization and Its Applications, Springer, edition 127, number 978-3-319-08828-0, June.
    3. A. Hordijk & L. C. M. Kallenberg, 1979. "Linear Programming and Markov Decision Chains," Management Science, INFORMS, vol. 25(4), pages 352-362, April.
    4. A. Hordijk & L. C. M. Kallenberg, 1984. "Constrained Undiscounted Stochastic Dynamic Programming," Mathematics of Operations Research, INFORMS, vol. 9(2), pages 276-289, May.
    5. Diego Klabjan & Daniel Adelman, 2007. "An Infinite-Dimensional Linear Programming Algorithm for Deterministic Semi-Markov Decision Processes on Borel Spaces," Mathematics of Operations Research, INFORMS, vol. 32(3), pages 528-550, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lodewijk Kallenberg, 2013. "Derman’s book as inspiration: some results on LP for MDPs," Annals of Operations Research, Springer, vol. 208(1), pages 63-94, September.
    2. Dijk, N.M. van, 1989. "Truncation of Markov decision problems with a queueing network overflow control application," Serie Research Memoranda 0065, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    3. Jérôme Renault & Xavier Venel, 2017. "Long-Term Values in Markov Decision Processes and Repeated Games, and a New Distance for Probability Spaces," Mathematics of Operations Research, INFORMS, vol. 42(2), pages 349-376, May.
    4. Dmitry Krass & O. J. Vrieze, 2002. "Achieving Target State-Action Frequencies in Multichain Average-Reward Markov Decision Processes," Mathematics of Operations Research, INFORMS, vol. 27(3), pages 545-566, August.
    5. Francesco Bartaloni, 2021. "Existence of the Optimum in Shallow Lake Type Models with Hysteresis Effect," Journal of Optimization Theory and Applications, Springer, vol. 190(2), pages 358-392, August.
    6. Abraham Neyman & Sylvain Sorin, 2010. "Repeated games with public uncertain duration process," International Journal of Game Theory, Springer;Game Theory Society, vol. 39(1), pages 29-52, March.
    7. Hugo Gimbert & Jérôme Renault & Sylvain Sorin & Xavier Venel & Wieslaw Zielonka, 2016. "On the values of repeated games with signals," PSE-Ecole d'économie de Paris (Postprint) hal-01006951, HAL.
    8. Gossner, Olivier & Hörner, Johannes, 2010. "When is the lowest equilibrium payoff in a repeated game equal to the minmax payoff?," Journal of Economic Theory, Elsevier, vol. 145(1), pages 63-84, January.
    9. Grüne, Lars & Semmler, Willi & Stieler, Marleen, 2015. "Using nonlinear model predictive control for dynamic decision problems in economics," Journal of Economic Dynamics and Control, Elsevier, vol. 60(C), pages 112-133.
    10. Olivier Gossner & Tristan Tomala, 2007. "Secret Correlation in Repeated Games with Imperfect Monitoring," Mathematics of Operations Research, INFORMS, vol. 32(2), pages 413-424, May.
    11. Jonathan Patrick & Martin L. Puterman & Maurice Queyranne, 2008. "Dynamic Multipriority Patient Scheduling for a Diagnostic Resource," Operations Research, INFORMS, vol. 56(6), pages 1507-1525, December.
    12. Yonghui Huang & Xianping Guo & Xinyuan Song, 2011. "Performance Analysis for Controlled Semi-Markov Systems with Application to Maintenance," Journal of Optimization Theory and Applications, Springer, vol. 150(2), pages 395-415, August.
    13. Xiaoxi Li & Xavier Venel, 2016. "Recursive games: Uniform value, Tauberian theorem and the Mertens conjecture " M axmin = lim v n = lim v λ "," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01302553, HAL.
    14. Daniel F. Silva & Bo Zhang & Hayriye Ayhan, 2018. "Admission control strategies for tandem Markovian loss systems," Queueing Systems: Theory and Applications, Springer, vol. 90(1), pages 35-63, October.
    15. Vladimir Ejov & Jerzy A. Filar & Michael Haythorpe & Giang T. Nguyen, 2009. "Refined MDP-Based Branch-and-Fix Algorithm for the Hamiltonian Cycle Problem," Mathematics of Operations Research, INFORMS, vol. 34(3), pages 758-768, August.
    16. D. P. de Farias & B. Van Roy, 2003. "The Linear Programming Approach to Approximate Dynamic Programming," Operations Research, INFORMS, vol. 51(6), pages 850-865, December.
    17. Nielsen, Lars Relund & Kristensen, Anders Ringgaard, 2006. "Finding the K best policies in a finite-horizon Markov decision process," European Journal of Operational Research, Elsevier, vol. 175(2), pages 1164-1179, December.
    18. Hansen, Kristoffer Arnsfelt & Ibsen-Jensen, Rasmus & Neyman, Abraham, 2021. "Absorbing games with a clock and two bits of memory," Games and Economic Behavior, Elsevier, vol. 128(C), pages 213-230.
    19. Olivier Gossner, 2011. "Simple Bounds on the Value of a Reputation," Econometrica, Econometric Society, vol. 79(5), pages 1627-1641, September.
    20. Xavier Venel, 2015. "Commutative Stochastic Games," Mathematics of Operations Research, INFORMS, vol. 40(2), pages 403-428, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:181:y:2019:i:1:d:10.1007_s10957-018-1432-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.