IDEAS home Printed from https://ideas.repec.org/a/spr/queues/v90y2018i1d10.1007_s11134-017-9569-3.html
   My bibliography  Save this article

Admission control strategies for tandem Markovian loss systems

Author

Listed:
  • Daniel F. Silva

    (Auburn University)

  • Bo Zhang

    (IBM Research AI)

  • Hayriye Ayhan

    (Georgia Institute of Technology)

Abstract

Motivated by communication networks, we study an admission control problem for a Markovian loss system comprised of two finite capacity service stations in tandem. Customers arrive to station 1 according to a Poisson process, and a gatekeeper, who has complete knowledge of the number of customers at both stations, decides whether to accept or reject each arriving customer. If a customer is rejected, a rejection cost is incurred. If an admitted customer finds that station 2 is full at the time of his service completion at station 1, he leaves the system and a loss cost is incurred. The goal is to find easy-to-implement policies that minimize long-run average cost per unit time. We formulate two intuitive, extremal policies and provide analytical results on their performances. We also present necessary and/or sufficient conditions under which each of these policies is optimal. Next, we show that for some states of the system it is always optimal to admit new arrivals. We also fully characterize the optimal policy when the capacity of each station is two and discuss some characteristics of optimal policies in general. Finally, we design heuristic admission control policies using these insights. Numerical experiments indicate that these heuristic policies yield near-optimal long-run average cost performance.

Suggested Citation

  • Daniel F. Silva & Bo Zhang & Hayriye Ayhan, 2018. "Admission control strategies for tandem Markovian loss systems," Queueing Systems: Theory and Applications, Springer, vol. 90(1), pages 35-63, October.
  • Handle: RePEc:spr:queues:v:90:y:2018:i:1:d:10.1007_s11134-017-9569-3
    DOI: 10.1007/s11134-017-9569-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11134-017-9569-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11134-017-9569-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Hordijk & L. C. M. Kallenberg, 1979. "Linear Programming and Markov Decision Chains," Management Science, INFORMS, vol. 25(4), pages 352-362, April.
    2. Ku, Cheng-Yuan & Jordan, Scott, 2003. "Near optimal admission control for multiserver loss queues in series," European Journal of Operational Research, Elsevier, vol. 144(1), pages 166-178, January.
    3. Ghoneim, Hussein A. & Stidham, Shaler, 1985. "Control of arrivals to two queues in series," European Journal of Operational Research, Elsevier, vol. 21(3), pages 399-409, September.
    4. Litvak, Nelly & van Rijsbergen, Marleen & Boucherie, Richard J. & van Houdenhoven, Mark, 2008. "Managing the overflow of intensive care patients," European Journal of Operational Research, Elsevier, vol. 185(3), pages 998-1010, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinchang Wang & Sigrún Andradóttir & Hayriye Ayhan & Tonghoon Suk, 2020. "Revenue maximization in two‐station tandem queueing systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(2), pages 77-107, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lodewijk Kallenberg, 2013. "Derman’s book as inspiration: some results on LP for MDPs," Annals of Operations Research, Springer, vol. 208(1), pages 63-94, September.
    2. Dijk, N.M. van, 1989. "Truncation of Markov decision problems with a queueing network overflow control application," Serie Research Memoranda 0065, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    3. Abhishek, & Legros, Benjamin & Fransoo, Jan C., 2021. "Performance evaluation of stochastic systems with dedicated delivery bays and general on-street parking," Other publications TiSEM 09ed9572-d59c-4f28-a9c4-b, Tilburg University, School of Economics and Management.
    4. John Bowers, 2013. "Balancing operating theatre and bed capacity in a cardiothoracic centre," Health Care Management Science, Springer, vol. 16(3), pages 236-244, September.
    5. Hideaki Takagi & Yuta Kanai & Kazuo Misue, 2017. "Queueing network model for obstetric patient flow in a hospital," Health Care Management Science, Springer, vol. 20(3), pages 433-451, September.
    6. Xinchang Wang & Sigrún Andradóttir & Hayriye Ayhan, 2019. "Optimal pricing for tandem queues with finite buffers," Queueing Systems: Theory and Applications, Springer, vol. 92(3), pages 323-396, August.
    7. Legros, Benjamin, 2021. "Routing analyses for call centers with human and automated services," International Journal of Production Economics, Elsevier, vol. 240(C).
    8. Michael Samudra & Carla Van Riet & Erik Demeulemeester & Brecht Cardoen & Nancy Vansteenkiste & Frank E. Rademakers, 2016. "Scheduling operating rooms: achievements, challenges and pitfalls," Journal of Scheduling, Springer, vol. 19(5), pages 493-525, October.
    9. Abhishek Abhishek & Benjamin Legros & Jan Fransoo, 2021. "Performance Evaluation of Stochastic Systems with Dedicated Delivery Bays and General On-Street Parking," Post-Print hal-03605434, HAL.
    10. Jérôme Renault & Xavier Venel, 2017. "Long-Term Values in Markov Decision Processes and Repeated Games, and a New Distance for Probability Spaces," Mathematics of Operations Research, INFORMS, vol. 42(2), pages 349-376, May.
    11. Julian Schiele & Thomas Koperna & Jens O. Brunner, 2021. "Predicting intensive care unit bed occupancy for integrated operating room scheduling via neural networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(1), pages 65-88, February.
    12. Dellaert, Nico & Jeunet, Jully & Mincsovics, Gergely, 2011. "Budget allocation for permanent and contingent capacity under stochastic demand," International Journal of Production Economics, Elsevier, vol. 131(1), pages 128-138, May.
    13. Samantha L. Zimmerman & Alexander R. Rutherford & Alexa Waall & Monica Norena & Peter Dodek, 2023. "A queuing model for ventilator capacity management during the COVID-19 pandemic," Health Care Management Science, Springer, vol. 26(2), pages 200-216, June.
    14. Willoughby, Keith A. & Chan, Benjamin T.B. & Marques, Shauna, 2016. "Using simulation to test ideas for improving speech language pathology services," European Journal of Operational Research, Elsevier, vol. 252(2), pages 657-664.
    15. D. P. de Farias & B. Van Roy, 2003. "The Linear Programming Approach to Approximate Dynamic Programming," Operations Research, INFORMS, vol. 51(6), pages 850-865, December.
    16. Song-Hee Kim & Ward Whitt, 2014. "Are Call Center and Hospital Arrivals Well Modeled by Nonhomogeneous Poisson Processes?," Manufacturing & Service Operations Management, INFORMS, vol. 16(3), pages 464-480, July.
    17. Yin-Chi Chan & Eric W. M. Wong & Gavin Joynt & Paul Lai & Moshe Zukerman, 2018. "Overflow models for the admission of intensive care patients," Health Care Management Science, Springer, vol. 21(4), pages 554-572, December.
    18. Jie Bai & Andreas Fügener & Jochen Gönsch & Jens O. Brunner & Manfred Blobner, 2021. "Managing admission and discharge processes in intensive care units," Health Care Management Science, Springer, vol. 24(4), pages 666-685, December.
    19. Gad Allon & Achal Bassamboo, 2011. "The Impact of Delaying the Delay Announcements," Operations Research, INFORMS, vol. 59(5), pages 1198-1210, October.
    20. Kuo, Yarlin, 2004. "Order arrival control of an M/M/1 failure prone service station," International Journal of Production Economics, Elsevier, vol. 91(2), pages 179-188, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:queues:v:90:y:2018:i:1:d:10.1007_s11134-017-9569-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.