IDEAS home Printed from https://ideas.repec.org/a/spr/queues/v90y2018i1d10.1007_s11134-017-9569-3.html
   My bibliography  Save this article

Admission control strategies for tandem Markovian loss systems

Author

Listed:
  • Daniel F. Silva

    (Auburn University)

  • Bo Zhang

    (IBM Research AI)

  • Hayriye Ayhan

    (Georgia Institute of Technology)

Abstract

Motivated by communication networks, we study an admission control problem for a Markovian loss system comprised of two finite capacity service stations in tandem. Customers arrive to station 1 according to a Poisson process, and a gatekeeper, who has complete knowledge of the number of customers at both stations, decides whether to accept or reject each arriving customer. If a customer is rejected, a rejection cost is incurred. If an admitted customer finds that station 2 is full at the time of his service completion at station 1, he leaves the system and a loss cost is incurred. The goal is to find easy-to-implement policies that minimize long-run average cost per unit time. We formulate two intuitive, extremal policies and provide analytical results on their performances. We also present necessary and/or sufficient conditions under which each of these policies is optimal. Next, we show that for some states of the system it is always optimal to admit new arrivals. We also fully characterize the optimal policy when the capacity of each station is two and discuss some characteristics of optimal policies in general. Finally, we design heuristic admission control policies using these insights. Numerical experiments indicate that these heuristic policies yield near-optimal long-run average cost performance.

Suggested Citation

  • Daniel F. Silva & Bo Zhang & Hayriye Ayhan, 2018. "Admission control strategies for tandem Markovian loss systems," Queueing Systems: Theory and Applications, Springer, vol. 90(1), pages 35-63, October.
  • Handle: RePEc:spr:queues:v:90:y:2018:i:1:d:10.1007_s11134-017-9569-3
    DOI: 10.1007/s11134-017-9569-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11134-017-9569-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11134-017-9569-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Litvak, Nelly & van Rijsbergen, Marleen & Boucherie, Richard J. & van Houdenhoven, Mark, 2008. "Managing the overflow of intensive care patients," European Journal of Operational Research, Elsevier, vol. 185(3), pages 998-1010, March.
    2. A. Hordijk & L. C. M. Kallenberg, 1979. "Linear Programming and Markov Decision Chains," Management Science, INFORMS, vol. 25(4), pages 352-362, April.
    3. Ghoneim, Hussein A. & Stidham, Shaler, 1985. "Control of arrivals to two queues in series," European Journal of Operational Research, Elsevier, vol. 21(3), pages 399-409, September.
    4. Ku, Cheng-Yuan & Jordan, Scott, 2003. "Near optimal admission control for multiserver loss queues in series," European Journal of Operational Research, Elsevier, vol. 144(1), pages 166-178, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinchang Wang & Sigrún Andradóttir & Hayriye Ayhan & Tonghoon Suk, 2020. "Revenue maximization in two‐station tandem queueing systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(2), pages 77-107, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lodewijk Kallenberg, 2013. "Derman’s book as inspiration: some results on LP for MDPs," Annals of Operations Research, Springer, vol. 208(1), pages 63-94, September.
    2. Fattahi, Mohammad & Keyvanshokooh, Esmaeil & Kannan, Devika & Govindan, Kannan, 2023. "Resource planning strategies for healthcare systems during a pandemic," European Journal of Operational Research, Elsevier, vol. 304(1), pages 192-206.
    3. Ku, Cheng-Yuan & Jordan, Scott, 2003. "Near optimal admission control for multiserver loss queues in series," European Journal of Operational Research, Elsevier, vol. 144(1), pages 166-178, January.
    4. Josephine Varney & Nigel Bean & Mark Mackay, 2019. "The self-regulating nature of occupancy in ICUs: stochastic homoeostasis," Health Care Management Science, Springer, vol. 22(4), pages 615-634, December.
    5. Yanting Chen & Jingui Xie & Taozeng Zhu, 2023. "Overflow in systems with two servers: the negative consequences," Flexible Services and Manufacturing Journal, Springer, vol. 35(3), pages 838-863, September.
    6. Purba Das & T. Parthasarathy & G. Ravindran, 2022. "On Completely Mixed Stochastic Games," SN Operations Research Forum, Springer, vol. 3(4), pages 1-26, December.
    7. Jérôme Renault & Xavier Venel, 2017. "Long-Term Values in Markov Decision Processes and Repeated Games, and a New Distance for Probability Spaces," Mathematics of Operations Research, INFORMS, vol. 42(2), pages 349-376, May.
    8. Villa, Stefano & Prenestini, Anna & Giusepi, Isabella, 2014. "A framework to analyze hospital-wide patient flow logistics: Evidence from an Italian comparative study," Health Policy, Elsevier, vol. 115(2), pages 196-205.
    9. Dijk, N.M. van, 1989. "Truncation of Markov decision problems with a queueing network overflow control application," Serie Research Memoranda 0065, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    10. Prasenjit Mondal, 2020. "Computing semi-stationary optimal policies for multichain semi-Markov decision processes," Annals of Operations Research, Springer, vol. 287(2), pages 843-865, April.
    11. Rachuba, Sebastian & Imhoff, Lisa & Werners, Brigitte, 2022. "Tactical blueprints for surgical weeks – An integrated approach for operating rooms and intensive care units," European Journal of Operational Research, Elsevier, vol. 298(1), pages 243-260.
    12. Zhuang, Weifen & Li, Michael Z.F., 2012. "Monotone optimal control for a class of Markov decision processes," European Journal of Operational Research, Elsevier, vol. 217(2), pages 342-350.
    13. Alejandro Arrieta & Ariadna García Prado, 2016. "Non-elective C-sections in public hospitals: capacity constraints and doctor incentives," Applied Economics, Taylor & Francis Journals, vol. 48(49), pages 4719-4731, October.
    14. Abhishek, & Legros, Benjamin & Fransoo, Jan C., 2021. "Performance evaluation of stochastic systems with dedicated delivery bays and general on-street parking," Other publications TiSEM 09ed9572-d59c-4f28-a9c4-b, Tilburg University, School of Economics and Management.
    15. Yuta Kanai & Hideaki Takagi, 2021. "Markov chain analysis for the neonatal inpatient flow in a hospital," Health Care Management Science, Springer, vol. 24(1), pages 92-116, March.
    16. Masselink, Inge H.J. & van der Mijden, Thomas L.C. & Litvak, Nelly & Vanberkel, Peter T., 2012. "Preparation of chemotherapy drugs: Planning policy for reduced waiting times," Omega, Elsevier, vol. 40(2), pages 181-187, April.
    17. Michael O’Sullivan & Arthur F. Veinott, Jr., 2017. "Polynomial-Time Computation of Strong and n -Present-Value Optimal Policies in Markov Decision Chains," Mathematics of Operations Research, INFORMS, vol. 42(3), pages 577-598, August.
    18. Stef Baas & Sander Dijkstra & Aleida Braaksma & Plom Rooij & Fieke J. Snijders & Lars Tiemessen & Richard J. Boucherie, 2021. "Real-time forecasting of COVID-19 bed occupancy in wards and Intensive Care Units," Health Care Management Science, Springer, vol. 24(2), pages 402-419, June.
    19. Prasenjit Mondal, 2015. "Linear Programming and Zero-Sum Two-Person Undiscounted Semi-Markov Games," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 32(06), pages 1-20, December.
    20. Fermín Mallor & Cristina Azcárate & Julio Barado, 2016. "Control problems and management policies in health systems: application to intensive care units," Flexible Services and Manufacturing Journal, Springer, vol. 28(1), pages 62-89, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:queues:v:90:y:2018:i:1:d:10.1007_s11134-017-9569-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.