Formulas for Asymptotic Functions via Conjugates, Directional Derivatives and Subdifferentials
Author
Abstract
Suggested Citation
DOI: 10.1007/s10957-017-1101-8
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- WEGGE, Leon L., 1974. "Mean value theorem for convex functions," LIDAM Reprints CORE 185, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Wegge, Leon L., 1974. "Mean value theorem for convex functions," Journal of Mathematical Economics, Elsevier, vol. 1(2), pages 207-208, August.
- Fabián Flores-Bazán & Fernando Flores-Bazán & Cristián Vera, 2015. "Maximizing and minimizing quasiconvex functions: related properties, existence and optimality conditions via radial epiderivatives," Journal of Global Optimization, Springer, vol. 63(1), pages 99-123, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Alfredo Iusem & Felipe Lara, 2019. "Optimality Conditions for Vector Equilibrium Problems with Applications," Journal of Optimization Theory and Applications, Springer, vol. 180(1), pages 187-206, January.
- Felipe Lara, 2020. "Optimality Conditions for Nonconvex Nonsmooth Optimization via Global Derivatives," Journal of Optimization Theory and Applications, Springer, vol. 185(1), pages 134-150, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jeong, Hanbat & Lee, Lung-fei, 2024. "Maximum likelihood estimation of a spatial autoregressive model for origin–destination flow variables," Journal of Econometrics, Elsevier, vol. 242(1).
- Eunji Lim, 2014. "On Convergence Rates of Convex Regression in Multiple Dimensions," INFORMS Journal on Computing, INFORMS, vol. 26(3), pages 616-628, August.
- J. P. Penot, 1997. "Mean-Value Theorem with Small Subdifferentials," Journal of Optimization Theory and Applications, Springer, vol. 94(1), pages 209-221, July.
- Xu, Xingbai & Lee, Lung-fei, 2015. "Maximum likelihood estimation of a spatial autoregressive Tobit model," Journal of Econometrics, Elsevier, vol. 188(1), pages 264-280.
- Fabián Flores-Bazán & William Echegaray & Fernando Flores-Bazán & Eladio Ocaña, 2017. "Primal or dual strong-duality in nonconvex optimization and a class of quasiconvex problems having zero duality gap," Journal of Global Optimization, Springer, vol. 69(4), pages 823-845, December.
- A. Iusem & F. Lara, 2022. "Proximal Point Algorithms for Quasiconvex Pseudomonotone Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 443-461, June.
- Nicolas Hadjisavvas & Felipe Lara & Juan Enrique Martínez-Legaz, 2019. "A Quasiconvex Asymptotic Function with Applications in Optimization," Journal of Optimization Theory and Applications, Springer, vol. 180(1), pages 170-186, January.
- F. Flores-Bazán & N. Hadjisavvas & F. Lara & I. Montenegro, 2016. "First- and Second-Order Asymptotic Analysis with Applications in Quasiconvex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 170(2), pages 372-393, August.
- Nicolas Hadjisavvas & Felipe Lara & Dinh The Luc, 2020. "A general asymptotic function with applications in nonconvex optimization," Journal of Global Optimization, Springer, vol. 78(1), pages 49-68, September.
- Fabián Flores-Bazán & Filip Thiele, 2022. "On the Lower Semicontinuity of the Value Function and Existence of Solutions in Quasiconvex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 195(2), pages 390-417, November.
- Felipe Lara, 2020. "Optimality Conditions for Nonconvex Nonsmooth Optimization via Global Derivatives," Journal of Optimization Theory and Applications, Springer, vol. 185(1), pages 134-150, April.
- Alfredo Iusem & Felipe Lara, 2019. "Optimality Conditions for Vector Equilibrium Problems with Applications," Journal of Optimization Theory and Applications, Springer, vol. 180(1), pages 187-206, January.
- Alfredo Iusem & Felipe Lara, 2019. "Existence Results for Noncoercive Mixed Variational Inequalities in Finite Dimensional Spaces," Journal of Optimization Theory and Applications, Springer, vol. 183(1), pages 122-138, October.
More about this item
Keywords
Asymptotic cones and functions; q-Asymptotic functions; c-Conjugates; Directional derivatives; Subdifferentials;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:173:y:2017:i:3:d:10.1007_s10957-017-1101-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.