IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v188y2015i1p264-280.html
   My bibliography  Save this article

Maximum likelihood estimation of a spatial autoregressive Tobit model

Author

Listed:
  • Xu, Xingbai
  • Lee, Lung-fei

Abstract

This paper examines a Tobit model with spatial autoregressive interactions. We consider the maximum likelihood estimation for this model and analyze asymptotic properties of the estimator based on the spatial near-epoch dependence of the dependent variable process generated from the model structure. We show that the maximum likelihood estimator is consistent and asymptotically normally distributed. Monte Carlo experiments are performed to verify finite sample properties of the estimator.

Suggested Citation

  • Xu, Xingbai & Lee, Lung-fei, 2015. "Maximum likelihood estimation of a spatial autoregressive Tobit model," Journal of Econometrics, Elsevier, vol. 188(1), pages 264-280.
  • Handle: RePEc:eee:econom:v:188:y:2015:i:1:p:264-280
    DOI: 10.1016/j.jeconom.2015.05.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407615001657
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2015.05.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kelejian, Harry H & Prucha, Ingmar R, 1999. "A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(2), pages 509-533, May.
    2. Jenish, Nazgul, 2012. "Nonparametric spatial regression under near-epoch dependence," Journal of Econometrics, Elsevier, vol. 167(1), pages 224-239.
    3. repec:asg:wpaper:1048 is not listed on IDEAS
    4. Andrews, Donald W K, 1994. "Asymptotics for Semiparametric Econometric Models via Stochastic Equicontinuity," Econometrica, Econometric Society, vol. 62(1), pages 43-72, January.
    5. Qu, Xi & Lee, Lung-fei, 2012. "LM tests for spatial correlation in spatial models with limited dependent variables," Regional Science and Urban Economics, Elsevier, vol. 42(3), pages 430-445.
    6. Federico Ciliberto & Elie Tamer, 2009. "Market Structure and Multiple Equilibria in Airline Markets," Econometrica, Econometric Society, vol. 77(6), pages 1791-1828, November.
    7. Davidson, James, 1994. "Stochastic Limit Theory: An Introduction for Econometricians," OUP Catalogue, Oxford University Press, number 9780198774037.
    8. Xu, Xingbai & Lee, Lung-fei, 2015. "A spatial autoregressive model with a nonlinear transformation of the dependent variable," Journal of Econometrics, Elsevier, vol. 186(1), pages 1-18.
    9. WEGGE, Leon L., 1974. "Mean value theorem for convex functions," LIDAM Reprints CORE 185, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    10. Kelejian, Harry H & Prucha, Ingmar R, 1998. "A Generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances," The Journal of Real Estate Finance and Economics, Springer, vol. 17(1), pages 99-121, July.
    11. Coralio Ballester & Antoni Calvó-Armengol & Yves Zenou, 2006. "Who's Who in Networks. Wanted: The Key Player," Econometrica, Econometric Society, vol. 74(5), pages 1403-1417, September.
    12. Andrews, Donald W.K., 1992. "Generic Uniform Convergence," Econometric Theory, Cambridge University Press, vol. 8(2), pages 241-257, June.
    13. Antoni Calvó-Armengol & Eleonora Patacchini & Yves Zenou, 2009. "Peer Effects and Social Networks in Education," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 76(4), pages 1239-1267.
    14. Wegge, Leon L., 1974. "Mean value theorem for convex functions," Journal of Mathematical Economics, Elsevier, vol. 1(2), pages 207-208, August.
    15. Amemiya, Takeshi, 1973. "Regression Analysis when the Dependent Variable is Truncated Normal," Econometrica, Econometric Society, vol. 41(6), pages 997-1016, November.
    16. Alexander Chudik & M. Hashem Pesaran & Elisa Tosetti, 2011. "Weak and strong cross‐section dependence and estimation of large panels," Econometrics Journal, Royal Economic Society, vol. 14(1), pages 45-90, February.
    17. Rothenberg, Thomas J, 1971. "Identification in Parametric Models," Econometrica, Econometric Society, vol. 39(3), pages 577-591, May.
    18. Abadir,Karim M. & Magnus,Jan R., 2005. "Matrix Algebra," Cambridge Books, Cambridge University Press, number 9780521537469, September.
    19. Lee, Lung-fei, 2007. "The method of elimination and substitution in the GMM estimation of mixed regressive, spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 140(1), pages 155-189, September.
    20. Patrick Bajari & Han Hong & Stephen P. Ryan, 2010. "Identification and Estimation of a Discrete Game of Complete Information," Econometrica, Econometric Society, vol. 78(5), pages 1529-1568, September.
    21. Lei, J., 2013. "Smoothed Spatial Maximum Score Estimation of Spatial Autoregressive Binary Choice Panel Models," Discussion Paper 2013-061, Tilburg University, Center for Economic Research.
    22. Victor Chernozhukov & Han Hong & Elie Tamer, 2007. "Estimation and Confidence Regions for Parameter Sets in Econometric Models," Econometrica, Econometric Society, vol. 75(5), pages 1243-1284, September.
    23. Amemiya, Takeshi, 1974. "Multivariate Regression and Simultaneous Equation Models when the Dependent Variables Are Truncated Normal," Econometrica, Econometric Society, vol. 42(6), pages 999-1012, November.
    24. Corinne Autant‐Bernard & James P. LeSage, 2011. "Quantifying Knowledge Spillovers Using Spatial Econometric Models," Journal of Regional Science, Wiley Blackwell, vol. 51(3), pages 471-496, August.
    25. Jenish, Nazgul & Prucha, Ingmar R., 2012. "On spatial processes and asymptotic inference under near-epoch dependence," Journal of Econometrics, Elsevier, vol. 170(1), pages 178-190.
    26. Lei, J., 2013. "Smoothed Spatial Maximum Score Estimation of Spatial Autoregressive Binary Choice Panel Models," Other publications TiSEM d63bf400-7ff2-4a1c-8067-1, Tilburg University, School of Economics and Management.
    27. Jenish, Nazgul & Prucha, Ingmar R., 2009. "Central limit theorems and uniform laws of large numbers for arrays of random fields," Journal of Econometrics, Elsevier, vol. 150(1), pages 86-98, May.
    28. Hermann Pythagore Pierre Donfouet & Pierre Wilner Jeanty & Éric Malin, 2012. "Accounting for spatial interactions in the demand for community-based health insurance: A Bayesian spatial Tobit analysis," Post-Print halshs-00767120, HAL.
    29. Qu, Xi & Lee, Lung-fei, 2015. "Estimating a spatial autoregressive model with an endogenous spatial weight matrix," Journal of Econometrics, Elsevier, vol. 184(2), pages 209-232.
    30. Nelson, Forrest D., 1977. "Censored regression models with unobserved, stochastic censoring thresholds," Journal of Econometrics, Elsevier, vol. 6(3), pages 309-327, November.
    31. Lung-Fei Lee, 2004. "Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Autoregressive Models," Econometrica, Econometric Society, vol. 72(6), pages 1899-1925, November.
    32. Alfonso Flores‐Lagunes & Kurt Erik Schnier, 2012. "Estimation of sample selection models with spatial dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(2), pages 173-204, March.
    33. Olsen, Randall J, 1978. "Note on the Uniqueness of the Maximum Likelihood Estimator for the Tobit Model," Econometrica, Econometric Society, vol. 46(5), pages 1211-1215, September.
    34. repec:cup:cbooks:9780521822893 is not listed on IDEAS
    35. McDonald, James B. & Newey, Whitney K., 1988. "Partially Adaptive Estimation of Regression Models via the Generalized T Distribution," Econometric Theory, Cambridge University Press, vol. 4(3), pages 428-457, December.
    36. Qu, Xi & Lee, Lung-fei, 2013. "Locally most powerful tests for spatial interactions in the simultaneous SAR Tobit model," Regional Science and Urban Economics, Elsevier, vol. 43(2), pages 307-321.
    37. Corinne Autant-Bernard & James Lesage, 2011. "Quantifying knowledge spillovers using spatial econometric tools," Post-Print halshs-00617709, HAL.
    38. Lee, Lung-fei, 2007. "GMM and 2SLS estimation of mixed regressive, spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 137(2), pages 489-514, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Xiu & Wang, Weining & Shin, Yongcheol, 2020. "Dynamic Spatial Network Quantile Autoregression," IRTG 1792 Discussion Papers 2020-024, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    2. T. Arduini, 2016. "Distribution Free Estimation of Spatial Autoregressive Binary Choice Panel Data Models," Working Papers wp1052, Dipartimento Scienze Economiche, Universita' di Bologna.
    3. Dargel, Lukas & Thomas-Agnan, Christine, 2022. "A generalized framework for estimating spatial econometric interaction models," TSE Working Papers 22-1312, Toulouse School of Economics (TSE).
    4. Arbia, Giuseppe, 2016. "Spatial Econometrics: A Broad View," Foundations and Trends(R) in Econometrics, now publishers, vol. 8(3-4), pages 145-265, November.
    5. Claudine Desrieux & Romain Espinosa & Michael Visser, 2022. "Simultaneous Decision Making of Juries: Evidence From the Paris Labor Court," Working Papers hal-04104190, HAL.
    6. Yun Li & Ming Xu & Juncheng Dai & Zhenshan Yang & Zhe Cheng, 2023. "Examining the Impact of Infrastructure Financialization on Uneven Regional Development: Evidence from China," Land, MDPI, vol. 12(3), pages 1-12, March.
    7. Ievoli Corrado & Basile Roberto Giovanni & Belliggiano Angelo, 2017. "The Spatial Patterns of Dairy Farming In Molise," European Countryside, Sciendo, vol. 9(4), pages 729-745, December.
    8. Xiu Xu & Weining Wang & Yongcheol Shin & Chaowen Zheng, 2024. "Dynamic Network Quantile Regression Model," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(2), pages 407-421, April.
    9. Yang, Chao & Lee, Lung-fei & Qu, Xi, 2018. "Tobit models with social interactions: Complete vs incomplete information," Regional Science and Urban Economics, Elsevier, vol. 73(C), pages 30-50.
    10. Fei Jin & Lung-fei Lee, 2020. "Asymptotic properties of a spatial autoregressive stochastic frontier model," Journal of Spatial Econometrics, Springer, vol. 1(1), pages 1-40, December.
    11. Ye, Xiaoqing & Xu, Juan & Wu, Xiangjun, 2018. "Estimation of an unbalanced panel data Tobit model with interactive effects," Journal of choice modelling, Elsevier, vol. 28(C), pages 108-123.
    12. Liu, Tuo & Xu, Xingbai & Lee, Lung-fei, 2022. "Consistency without compactness of the parameter space in spatial econometrics," Economics Letters, Elsevier, vol. 210(C).
    13. Rabovič, Renata & Čížek, Pavel, 2023. "Estimation of spatial sample selection models: A partial maximum likelihood approach," Journal of Econometrics, Elsevier, vol. 232(1), pages 214-243.
    14. Xu, Xingbai & Lee, Lung-fei, 2018. "Sieve maximum likelihood estimation of the spatial autoregressive Tobit model," Journal of Econometrics, Elsevier, vol. 203(1), pages 96-112.
    15. Anna Gloria Billé & Marco Rogna, 2022. "The effect of weather conditions on fertilizer applications: A spatial dynamic panel data analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 3-36, January.
    16. Wei Cheng, 2022. "Consistent EM algorithm for a spatial autoregressive probit model," Journal of Spatial Econometrics, Springer, vol. 3(1), pages 1-23, December.
    17. Bing Su & Fukang Zhu & Ke Zhu, 2023. "Statistical inference for the logarithmic spatial heteroskedasticity model with exogenous variables," Papers 2301.06658, arXiv.org.
    18. Baltagi, Badi H. & Egger, Peter H. & Kesina, Michaela, 2017. "Determinants of firm-level domestic sales and exports with spillovers: Evidence from China," Journal of Econometrics, Elsevier, vol. 199(2), pages 184-201.
    19. Pouliot, Guillaume Allaire, 2023. "Spatial econometrics for misaligned data," Journal of Econometrics, Elsevier, vol. 232(1), pages 168-190.
    20. Zhao, Chuanmin & Qu, Xi, 2021. "Peer effects in pension decision-making: evidence from China's new rural pension scheme," Labour Economics, Elsevier, vol. 69(C).
    21. Liu, Tuo & Lee, Lung-fei, 2019. "A likelihood ratio test for spatial model selection," Journal of Econometrics, Elsevier, vol. 213(2), pages 434-458.
    22. Jeong, Hanbat & Lee, Lung-fei, 2024. "Maximum likelihood estimation of a spatial autoregressive model for origin–destination flow variables," Journal of Econometrics, Elsevier, vol. 242(1).
    23. Guo, Juncong & Qu, Xi, 2022. "Competition in household human capital investments: Strength, motivations and consequences," Journal of Development Economics, Elsevier, vol. 158(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Xingbai & Lee, Lung-fei, 2018. "Sieve maximum likelihood estimation of the spatial autoregressive Tobit model," Journal of Econometrics, Elsevier, vol. 203(1), pages 96-112.
    2. Rabovič, Renata & Čížek, Pavel, 2023. "Estimation of spatial sample selection models: A partial maximum likelihood approach," Journal of Econometrics, Elsevier, vol. 232(1), pages 214-243.
    3. Xu, Xingbai & Lee, Lung-fei, 2015. "A spatial autoregressive model with a nonlinear transformation of the dependent variable," Journal of Econometrics, Elsevier, vol. 186(1), pages 1-18.
    4. Qu, Xi & Lee, Lung-fei, 2015. "Estimating a spatial autoregressive model with an endogenous spatial weight matrix," Journal of Econometrics, Elsevier, vol. 184(2), pages 209-232.
    5. Jeong, Hanbat & Lee, Lung-fei, 2024. "Maximum likelihood estimation of a spatial autoregressive model for origin–destination flow variables," Journal of Econometrics, Elsevier, vol. 242(1).
    6. Jin, Fei & Lee, Lung-fei, 2019. "GEL estimation and tests of spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 208(2), pages 585-612.
    7. Jeong, Hanbat & Lee, Lung-fei, 2021. "Spatial dynamic game models for coevolution of intertemporal economic decision-making and spatial networks," Journal of Economic Dynamics and Control, Elsevier, vol. 129(C).
    8. Pesaran, M. Hashem & Yang, Cynthia Fan, 2021. "Estimation and inference in spatial models with dominant units," Journal of Econometrics, Elsevier, vol. 221(2), pages 591-615.
    9. Bing Su & Fukang Zhu & Ke Zhu, 2023. "Statistical inference for the logarithmic spatial heteroskedasticity model with exogenous variables," Papers 2301.06658, arXiv.org.
    10. Liu, Tuo & Lee, Lung-fei, 2019. "A likelihood ratio test for spatial model selection," Journal of Econometrics, Elsevier, vol. 213(2), pages 434-458.
    11. Badi H. Baltagi & Peter H. Egger & Michaela Kesina, 2022. "Bayesian estimation of multivariate panel probits with higher‐order network interdependence and an application to firms' global market participation in Guangdong," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(7), pages 1356-1378, November.
    12. Cynthia Fan Yang, 2021. "Common factors and spatial dependence: an application to US house prices," Econometric Reviews, Taylor & Francis Journals, vol. 40(1), pages 14-50, January.
    13. Qu, Xi & Lee, Lung-fei & Yang, Chao, 2021. "Estimation of a SAR model with endogenous spatial weights constructed by bilateral variables," Journal of Econometrics, Elsevier, vol. 221(1), pages 180-197.
    14. Badi H. Baltagi & Peter H. Egger & Michaela Kesina, 2018. "Generalized spatial autocorrelation in a panel-probit model with an application to exporting in China," Empirical Economics, Springer, vol. 55(1), pages 193-211, August.
    15. Tiziano Arduini & Eleonora Patacchini & Edoardo Rainone, 2015. "Parametric and Semiparametric IV Estimation of Network Models with Selectivity," EIEF Working Papers Series 1509, Einaudi Institute for Economics and Finance (EIEF), revised Oct 2015.
    16. T. Arduini, 2016. "Distribution Free Estimation of Spatial Autoregressive Binary Choice Panel Data Models," Working Papers wp1052, Dipartimento Scienze Economiche, Universita' di Bologna.
    17. Yang, Kai & Lee, Lung-fei, 2017. "Identification and QML estimation of multivariate and simultaneous equations spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 196(1), pages 196-214.
    18. Abhimanyu Gupta & Xi Qu, 2021. "Consistent specification testing under spatial dependence," Papers 2101.10255, arXiv.org, revised Aug 2022.
    19. Doğan, Osman & Taşpınar, Süleyman, 2013. "GMM estimation of spatial autoregressive models with moving average disturbances," Regional Science and Urban Economics, Elsevier, vol. 43(6), pages 903-926.
    20. Jin, Fei & Lee, Lung-fei, 2013. "Cox-type tests for competing spatial autoregressive models with spatial autoregressive disturbances," Regional Science and Urban Economics, Elsevier, vol. 43(4), pages 590-616.

    More about this item

    Keywords

    Spatial autoregressive model; Tobit model; Censored data; Near-epoch dependence; Maximum likelihood;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C24 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Truncated and Censored Models; Switching Regression Models; Threshold Regression Models
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:188:y:2015:i:1:p:264-280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.