IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v173y2017i2d10.1007_s10957-017-1069-4.html
   My bibliography  Save this article

Finding Robust Global Optimal Values of Bilevel Polynomial Programs with Uncertain Linear Constraints

Author

Listed:
  • T. D. Chuong

    (University of New South Wales)

  • V. Jeyakumar

    (University of New South Wales)

Abstract

This paper studies a bilevel polynomial program involving box data uncertainties in both its linear constraint set and its lower-level optimization problem. We show that the robust global optimal value of the uncertain bilevel polynomial program is the limit of a sequence of values of Lasserre-type hierarchy of semidefinite linear programming relaxations. This is done by first transforming the uncertain bilevel polynomial program into a single-level non-convex polynomial program using a dual characterization of the solution of the lower-level program and then employing the powerful Putinar’s Positivstellensatz of semi-algebraic geometry. We provide a numerical example to show how the robust global optimal value of the uncertain bilevel polynomial program can be calculated by solving a semidefinite programming problem using the MATLAB toolbox YALMIP.

Suggested Citation

  • T. D. Chuong & V. Jeyakumar, 2017. "Finding Robust Global Optimal Values of Bilevel Polynomial Programs with Uncertain Linear Constraints," Journal of Optimization Theory and Applications, Springer, vol. 173(2), pages 683-703, May.
  • Handle: RePEc:spr:joptap:v:173:y:2017:i:2:d:10.1007_s10957-017-1069-4
    DOI: 10.1007/s10957-017-1069-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-017-1069-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-017-1069-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gabrel, Virginie & Murat, Cécile & Thiele, Aurélie, 2014. "Recent advances in robust optimization: An overview," European Journal of Operational Research, Elsevier, vol. 235(3), pages 471-483.
    2. S. Dempe & N. Gadhi & A. B. Zemkoho, 2013. "New Optimality Conditions for the Semivectorial Bilevel Optimization Problem," Journal of Optimization Theory and Applications, Springer, vol. 157(1), pages 54-74, April.
    3. Omar Ben-Ayed & Charles E. Blair, 1990. "Computational Difficulties of Bilevel Linear Programming," Operations Research, INFORMS, vol. 38(3), pages 556-560, June.
    4. V. Jeyakumar & J. Vicente-Pérez, 2014. "Dual Semidefinite Programs Without Duality Gaps for a Class of Convex Minimax Programs," Journal of Optimization Theory and Applications, Springer, vol. 162(3), pages 735-753, September.
    5. V. Jeyakumar & J. B. Lasserre & G. Li, 2014. "On Polynomial Optimization Over Non-compact Semi-algebraic Sets," Journal of Optimization Theory and Applications, Springer, vol. 163(3), pages 707-718, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    2. Thai Doan Chuong, 2020. "Optimality conditions for nonsmooth multiobjective bilevel optimization problems," Annals of Operations Research, Springer, vol. 287(2), pages 617-642, April.
    3. Thai Doan Chuong & Xinghuo Yu & Andrew Eberhard & Chaojie Li & Chen Liu, 2024. "Hierarchy relaxations for robust equilibrium constrained polynomial problems and applications to electric vehicle charging scheduling," Journal of Global Optimization, Springer, vol. 90(3), pages 781-811, November.
    4. Christoph Buchheim & Dorothee Henke, 2022. "The robust bilevel continuous knapsack problem with uncertain coefficients in the follower’s objective," Journal of Global Optimization, Springer, vol. 83(4), pages 803-824, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. T. D. Chuong & V. Jeyakumar, 2018. "Generalized Lagrangian duality for nonconvex polynomial programs with polynomial multipliers," Journal of Global Optimization, Springer, vol. 72(4), pages 655-678, December.
    2. Cambier, Adrien & Chardy, Matthieu & Figueiredo, Rosa & Ouorou, Adam & Poss, Michael, 2022. "Optimizing subscriber migrations for a telecommunication operator in uncertain context," European Journal of Operational Research, Elsevier, vol. 298(1), pages 308-321.
    3. Sarhadi, Hassan & Naoum-Sawaya, Joe & Verma, Manish, 2020. "A robust optimization approach to locating and stockpiling marine oil-spill response facilities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    4. Jeong, Jaehee & Premsankar, Gopika & Ghaddar, Bissan & Tarkoma, Sasu, 2024. "A robust optimization approach for placement of applications in edge computing considering latency uncertainty," Omega, Elsevier, vol. 126(C).
    5. Baker, Erin & Bosetti, Valentina & Salo, Ahti, 2016. "Finding Common Ground when Experts Disagree: Belief Dominance over Portfolios of Alternatives," MITP: Mitigation, Innovation and Transformation Pathways 243147, Fondazione Eni Enrico Mattei (FEEM).
    6. Qiu, Ruozhen & Sun, Minghe & Lim, Yun Fong, 2017. "Optimizing (s, S) policies for multi-period inventory models with demand distribution uncertainty: Robust dynamic programing approaches," European Journal of Operational Research, Elsevier, vol. 261(3), pages 880-892.
    7. Morteza Davari & Erik Demeulemeester, 2019. "The proactive and reactive resource-constrained project scheduling problem," Journal of Scheduling, Springer, vol. 22(2), pages 211-237, April.
    8. Antonio G. Martín & Manuel Díaz-Madroñero & Josefa Mula, 2020. "Master production schedule using robust optimization approaches in an automobile second-tier supplier," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 143-166, March.
    9. Jiang, Sheng-Long & Wang, Meihong & Bogle, I. David L., 2023. "Plant-wide byproduct gas distribution under uncertainty in iron and steel industry via quantile forecasting and robust optimization," Applied Energy, Elsevier, vol. 350(C).
    10. Shunichi Ohmori, 2021. "A Predictive Prescription Using Minimum Volume k -Nearest Neighbor Enclosing Ellipsoid and Robust Optimization," Mathematics, MDPI, vol. 9(2), pages 1-16, January.
    11. Lamas, Patricio & Goycoolea, Marcos & Pagnoncelli, Bernardo & Newman, Alexandra, 2024. "A target-time-windows technique for project scheduling under uncertainty," European Journal of Operational Research, Elsevier, vol. 314(2), pages 792-806.
    12. Metzker Soares, Paula & Thevenin, Simon & Adulyasak, Yossiri & Dolgui, Alexandre, 2024. "Adaptive robust optimization for lot-sizing under yield uncertainty," European Journal of Operational Research, Elsevier, vol. 313(2), pages 513-526.
    13. Walid Ben-Ameur & Adam Ouorou & Guanglei Wang & Mateusz Żotkiewicz, 2018. "Multipolar robust optimization," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 395-434, December.
    14. Sinha, Surabhi & Sinha, S. B., 2002. "KKT transformation approach for multi-objective multi-level linear programming problems," European Journal of Operational Research, Elsevier, vol. 143(1), pages 19-31, November.
    15. Boge, Sven & Goerigk, Marc & Knust, Sigrid, 2020. "Robust optimization for premarshalling with uncertain priority classes," European Journal of Operational Research, Elsevier, vol. 287(1), pages 191-210.
    16. Postek, Krzysztof & den Hertog, Dick & Kind, J. & Pustjens, Chris, 2016. "Adjustable Robust Strategies for Flood Protection," Discussion Paper 2016-038, Tilburg University, Center for Economic Research.
    17. Benati, S. & Conde, E., 2022. "A relative robust approach on expected returns with bounded CVaR for portfolio selection," European Journal of Operational Research, Elsevier, vol. 296(1), pages 332-352.
    18. Asimit, Alexandru V. & Bignozzi, Valeria & Cheung, Ka Chun & Hu, Junlei & Kim, Eun-Seok, 2017. "Robust and Pareto optimality of insurance contracts," European Journal of Operational Research, Elsevier, vol. 262(2), pages 720-732.
    19. Maillet, Bertrand & Tokpavi, Sessi & Vaucher, Benoit, 2015. "Global minimum variance portfolio optimisation under some model risk: A robust regression-based approach," European Journal of Operational Research, Elsevier, vol. 244(1), pages 289-299.
    20. Abumoslem Mohammadi & Javad Tayyebi, 2019. "Maximum Capacity Path Interdiction Problem with Fixed Costs," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(04), pages 1-21, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:173:y:2017:i:2:d:10.1007_s10957-017-1069-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.