IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v72y2018i4d10.1007_s10898-018-0665-7.html
   My bibliography  Save this article

Generalized Lagrangian duality for nonconvex polynomial programs with polynomial multipliers

Author

Listed:
  • T. D. Chuong

    (University of New South Wales)

  • V. Jeyakumar

    (University of New South Wales)

Abstract

In this paper, under the existence of a certificate of nonnegativity of the objective function over the given constraint set, we present saddle-point global optimality conditions and a generalized Lagrangian duality theorem for (not necessarily convex) polynomial optimization problems, where the Lagrange multipliers are polynomials. We show that the nonnegativity certificate together with the archimedean condition guarantees that the values of the Lasserre hierarchy of semidefinite programming (SDP) relaxations of the primal polynomial problem converge asymptotically to the common primal–dual value. We then show that the known regularity conditions that guarantee finite convergence of the Lasserre hierarchy also ensure that the nonnegativity certificate holds and the values of the SDP relaxations converge finitely to the common primal–dual value. Finally, we provide classes of nonconvex polynomial optimization problems for which the Slater condition guarantees the required nonnegativity certificate and the common primal–dual value with constant multipliers and the dual problems can be reformulated as semidefinite programs. These classes include some separable polynomial programs and quadratic optimization problems with quadratic constraints that admit certain hidden convexity. We also give several numerical examples that illustrate our results.

Suggested Citation

  • T. D. Chuong & V. Jeyakumar, 2018. "Generalized Lagrangian duality for nonconvex polynomial programs with polynomial multipliers," Journal of Global Optimization, Springer, vol. 72(4), pages 655-678, December.
  • Handle: RePEc:spr:jglopt:v:72:y:2018:i:4:d:10.1007_s10898-018-0665-7
    DOI: 10.1007/s10898-018-0665-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-018-0665-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-018-0665-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. H. Tuy & H. Tuan, 2013. "Generalized S-Lemma and strong duality in nonconvex quadratic programming," Journal of Global Optimization, Springer, vol. 56(3), pages 1045-1072, July.
    2. V. Jeyakumar & J. Vicente-Pérez, 2014. "Dual Semidefinite Programs Without Duality Gaps for a Class of Convex Minimax Programs," Journal of Optimization Theory and Applications, Springer, vol. 162(3), pages 735-753, September.
    3. V. Jeyakumar & J. B. Lasserre & G. Li, 2014. "On Polynomial Optimization Over Non-compact Semi-algebraic Sets," Journal of Optimization Theory and Applications, Springer, vol. 163(3), pages 707-718, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moslem Zamani, 2019. "A new algorithm for concave quadratic programming," Journal of Global Optimization, Springer, vol. 75(3), pages 655-681, November.
    2. T. D. Chuong & V. Jeyakumar & G. Li, 2019. "A new bounded degree hierarchy with SOCP relaxations for global polynomial optimization and conic convex semi-algebraic programs," Journal of Global Optimization, Springer, vol. 75(4), pages 885-919, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. T. D. Chuong & V. Jeyakumar, 2017. "Finding Robust Global Optimal Values of Bilevel Polynomial Programs with Uncertain Linear Constraints," Journal of Optimization Theory and Applications, Springer, vol. 173(2), pages 683-703, May.
    2. Thai Doan Chuong, 2020. "Semidefinite Program Duals for Separable Polynomial Programs Involving Box Constraints," Journal of Optimization Theory and Applications, Springer, vol. 185(1), pages 289-299, April.
    3. Vaithilingam Jeyakumar & Gue Myung Lee & Jae Hyoung Lee & Yingkun Huang, 2024. "Sum-of-Squares Relaxations in Robust DC Optimization and Feature Selection," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 308-343, January.
    4. Cao Thanh Tinh & Thai Doan Chuong, 2022. "Conic Linear Programming Duals for Classes of Quadratic Semi-Infinite Programs with Applications," Journal of Optimization Theory and Applications, Springer, vol. 194(2), pages 570-596, August.
    5. Vaithilingam Jeyakumar & Guoyin Li, 2017. "Exact Conic Programming Relaxations for a Class of Convex Polynomial Cone Programs," Journal of Optimization Theory and Applications, Springer, vol. 172(1), pages 156-178, January.
    6. Huu-Quang Nguyen & Ruey-Lin Sheu, 2019. "Geometric properties for level sets of quadratic functions," Journal of Global Optimization, Springer, vol. 73(2), pages 349-369, February.
    7. Sönke Behrends & Anita Schöbel, 2020. "Generating Valid Linear Inequalities for Nonlinear Programs via Sums of Squares," Journal of Optimization Theory and Applications, Springer, vol. 186(3), pages 911-935, September.
    8. Thai Doan Chuong & José Vicente-Pérez, 2023. "Conic Relaxations with Stable Exactness Conditions for Parametric Robust Convex Polynomial Problems," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 387-410, May.
    9. Thai Doan Chuong & Vaithilingam Jeyakumar, 2020. "Generalized Farkas Lemma with Adjustable Variables and Two-Stage Robust Linear Programs," Journal of Optimization Theory and Applications, Springer, vol. 187(2), pages 488-519, November.
    10. Trang T. Du & Toan M. Ho, 2019. "Polynomial Optimization on Some Unbounded Closed Semi-algebraic Sets," Journal of Optimization Theory and Applications, Springer, vol. 183(1), pages 352-363, October.
    11. Jae Hyoung Lee & Liguo Jiao, 2018. "Solving Fractional Multicriteria Optimization Problems with Sum of Squares Convex Polynomial Data," Journal of Optimization Theory and Applications, Springer, vol. 176(2), pages 428-455, February.
    12. Y. Shi & H. D. Tuan & H. Tuy & S. Su, 2017. "Global optimization for optimal power flow over transmission networks," Journal of Global Optimization, Springer, vol. 69(3), pages 745-760, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:72:y:2018:i:4:d:10.1007_s10898-018-0665-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.